Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 209, Number 2, Pages 274–304
DOI: https://doi.org/10.4213/tmf10067
(Mi tmf10067)
 

This article is cited in 3 scientific papers (total in 3 papers)

Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions

DeQin Qiu, Cong Lv

Department of Mathematics, School of Science, China University of Mining and Technology, Beijing, China
References:
Abstract: We apply the inverse scattering transformation to the generalized mixed nonlinear Schrödinger equation with nonzero boundary condition at infinity. The scattering theories are investigated. In the direct problem, we analyze the analyticity, symmetries, and asymptotic behaviors of the Jost solutions and the scattering matrix, and the properties of the discrete spectrum. In the inverse problem, an appropriate Riemann–Hilbert problem is formulated. By solving the problem, we obtain the reconstruction formula, the trace formula, and the “theta” condition. In the reflectionless case, a complicated integral factor is derived, which is a key ingredient of the explicit expression for $N$-soliton solutions. Using the $N$-soliton formula, we discuss the abundant dynamical features of the solution and its phases at different parameter values.
Keywords: Riemann–Hilbert problem, generalized mixed nonlinear Schrödinger equation, soliton solution.
Funding agency Grant number
National Natural Science Foundation of China 11871471
11931017
China University of Mining and Technology, Beijing 00-800015Z1177
This work is supported by the National Natural Science Foundation of China (Grant Nos. 11871471 and 11931017), the Yue Qi Outstanding Scholar Project, China University of Mining and Technology, Beijing (Grant No. 00-800015Z1177).
Received: 25.01.2021
Revised: 02.04.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 209, Issue 2, Pages 1552–1578
DOI: https://doi.org/10.1134/S0040577921110052
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: DeQin Qiu, Cong Lv, “Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions”, TMF, 209:2 (2021), 274–304; Theoret. and Math. Phys., 209:2 (2021), 1552–1578
Citation in format AMSBIB
\Bibitem{QiuLv21}
\by DeQin~Qiu, Cong~Lv
\paper Riemann--Hilbert approach and $N$-soliton solutions of the~generalized mixed nonlinear Schr\"odinger equation with nonzero boundary conditions
\jour TMF
\yr 2021
\vol 209
\issue 2
\pages 274--304
\mathnet{http://mi.mathnet.ru/tmf10067}
\crossref{https://doi.org/10.4213/tmf10067}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...209.1552Q}
\elib{https://elibrary.ru/item.asp?id=47798391}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 209
\issue 2
\pages 1552--1578
\crossref{https://doi.org/10.1134/S0040577921110052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000721607000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85119845890}
Linking options:
  • https://www.mathnet.ru/eng/tmf10067
  • https://doi.org/10.4213/tmf10067
  • https://www.mathnet.ru/eng/tmf/v209/i2/p274
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :29
    References:50
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024