Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 207, Number 3, Pages 333–346
DOI: https://doi.org/10.4213/tmf10041
(Mi tmf10041)
 

Univariable affine fractal interpolation functions

V. Drakopoulosa, N. Vijenderb

a Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
b Department Mathematics, Visvesvaraya National Institute of Technology, Nagpur, India
References:
Abstract: An overview of affine fractal interpolation functions using a suitable iterated function system is presented. Furthermore, a brief and coarse discussion on the theory of affine fractal interpolation functions in 2D and their recent developments including some of the research done by the authors is provided. Moreover, the desired range of the contractivity factors of an affine fractal interpolation surface are identified such that it is monotonic and positive for the respective monotonic and positive surface data. All the shape-preserving fractal schemes developed here are verified by numerical experiments.
Keywords: attractor, dynamic system, fractal interpolation, iterated function system.
Received: 22.12.2020
Revised: 03.03.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 207, Issue 3, Pages 689–700
DOI: https://doi.org/10.1134/S0040577921060015
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. Drakopoulos, N. Vijender, “Univariable affine fractal interpolation functions”, TMF, 207:3 (2021), 333–346; Theoret. and Math. Phys., 207:3 (2021), 689–700
Citation in format AMSBIB
\Bibitem{DraVij21}
\by V.~Drakopoulos, N.~Vijender
\paper Univariable affine fractal interpolation functions
\jour TMF
\yr 2021
\vol 207
\issue 3
\pages 333--346
\mathnet{http://mi.mathnet.ru/tmf10041}
\crossref{https://doi.org/10.4213/tmf10041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..689D}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 3
\pages 689--700
\crossref{https://doi.org/10.1134/S0040577921060015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000667702600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108892450}
Linking options:
  • https://www.mathnet.ru/eng/tmf10041
  • https://doi.org/10.4213/tmf10041
  • https://www.mathnet.ru/eng/tmf/v207/i3/p333
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :44
    References:57
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024