Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 207, Number 3, Pages 347–360
DOI: https://doi.org/10.4213/tmf10031
(Mi tmf10031)
 

Multi-component Toda lattice in centro-affine ${\mathbb R}^n$

Xiaojuan Duana, Chuanzhong Libc, Jing Ping Wangd

a Department of Mathematics and Physics, Xiamen University of Technology, Xiamen, China
b School of Mathematics and Statistics, Ningbo University, Ningbo, China
c College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
d School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK
References:
Abstract: We use the group-based discrete moving frame method to study invariant evolutions in a $n$-dimensional centro-affine space. We derive the induced integrable equations for invariants, which can be transformed to local and nonlocal multi-component Toda lattices under a Miura transformation, and thus establish their geometric realizations in centro-affine space.
Keywords: discrete moving frame, multi-component Toda lattices, Hamiltonian structures.
Funding agency Grant number
Engineering and Physical Sciences Research Council EP/P012698/1
National Natural Science Foundation of China 12071237
K. C. Wong Magna Fund (Ningbo University)
China Scholarship Council
The paper is supported by the EPSRC grant EP/P012698/1. JPW would like to thank the EPSRC for funding this research. This work was done during the visit of XJD and CZL in the University of Kent, which is supported by the China Scholarship Council. XJD and CZL would like to thank the School of Mathematics, Statistics & Actuarial Science of Kent University for the hospitality. CZL is supported by the National Natural Science Foundation of China under Grant No. 12071237 and K. C. Wong Magna Fund in Ningbo University.
Received: 13.12.2020
Revised: 13.12.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 207, Issue 3, Pages 701–712
DOI: https://doi.org/10.1134/S0040577921060027
Bibliographic databases:
Document Type: Article
MSC: 37K10, 37K60
Language: Russian
Citation: Xiaojuan Duan, Chuanzhong Li, Jing Ping Wang, “Multi-component Toda lattice in centro-affine ${\mathbb R}^n$”, TMF, 207:3 (2021), 347–360; Theoret. and Math. Phys., 207:3 (2021), 701–712
Citation in format AMSBIB
\Bibitem{DuaLiWan21}
\by Xiaojuan~Duan, Chuanzhong~Li, Jing~Ping~Wang
\paper Multi-component Toda lattice in centro-affine ${\mathbb R}^n$
\jour TMF
\yr 2021
\vol 207
\issue 3
\pages 347--360
\mathnet{http://mi.mathnet.ru/tmf10031}
\crossref{https://doi.org/10.4213/tmf10031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..701D}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 3
\pages 701--712
\crossref{https://doi.org/10.1134/S0040577921060027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000667702600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111153348}
Linking options:
  • https://www.mathnet.ru/eng/tmf10031
  • https://doi.org/10.4213/tmf10031
  • https://www.mathnet.ru/eng/tmf/v207/i3/p347
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :30
    References:46
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024