Abstract:
We study Möbius measures of the manifold of $n$-dimensional continued fractions in the sense of Klein. By definition any Möbius measure is invariant under the natural action of the group of projective transformations $\mathrm{PGL}(n+1)$ and is an integral of some form of the maximal dimension. It turns out that all Möbius measures are proportional, and the corresponding forms are written explicitly in some special coordinates. The formulae obtained allow one to compare approximately the relative frequencies of the $n$-dimensional faces of given integer-affine types for $n$-dimensional continued fractions. In this paper we make numerical calculations of some relative frequencies in the case of $n=2$.
Citation:
O. N. Karpenkov, “On an Invariant Möbius Measure and the Gauss–Kuzmin Face Distribution”, Analysis and singularities. Part 1, Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 258, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 79–92; Proc. Steklov Inst. Math., 258 (2007), 74–86
\Bibitem{Kar07}
\by O.~N.~Karpenkov
\paper On an Invariant M\"obius Measure and the Gauss--Kuzmin Face Distribution
\inbook Analysis and singularities. Part~1
\bookinfo Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 258
\pages 79--92
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2400525}
\zmath{https://zbmath.org/?q=an:1245.52006}
\elib{https://elibrary.ru/item.asp?id=9549684}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 258
\pages 74--86
\crossref{https://doi.org/10.1134/S008154380703008X}
\elib{https://elibrary.ru/item.asp?id=14025472}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35148820741}
Linking options:
https://www.mathnet.ru/eng/tm478
https://www.mathnet.ru/eng/tm/v258/p79
This publication is cited in the following 8 articles:
A. A. Illarionov, “The statistical properties of 3D Klein polyhedra”, Sb. Math., 211:5 (2020), 689–708
A. A. Illarionov, “Distribution of facets of higher-dimensional Klein polyhedra”, Sb. Math., 209:1 (2018), 56–70
A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539
A. V. Ustinov, “Three-dimensional continued fractions and Kloosterman sums”, Russian Math. Surveys, 70:3 (2015), 483–556
A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices”, Sb. Math., 204:6 (2013), 801–823
Oleg Karpenkov, Algorithms and Computation in Mathematics, 26, Geometry of Continued Fractions, 2013, 271
Oleg Karpenkov, Algorithms and Computation in Mathematics, 26, Geometry of Continued Fractions, 2013, 215
Karpenkov O.N., Vershik A.M., “Rational approximation of maximal commutative subgroups of $\mathrm{GL}(n,\mathbb R)$”, J. Fixed Point Theory Appl., 7:1 (2010), 241–263