|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Volume 258, Pages 70–78
(Mi tm477)
|
|
|
|
This article is cited in 11 scientific papers (total in 11 papers)
New Cases of Logarithmic Equivalence of Welschinger and Gromov–Witten Invariants
I. V. Itenberga, V. M. Kharlamova, E. I. Shustinb a University Louis Pasteur
b Tel Aviv University, School of Mathematical Sciences
Abstract:
We consider $\mathbb P^1\times\mathbb P^1$ equipped with the complex conjugation $(x,y)\mapsto(\bar y,\bar x)$ and blown up in at most two real or two complex conjugate points. For these four surfaces we prove the logarithmic equivalence of Welschinger and Gromov–Witten invariants.
Received in November 2006
Citation:
I. V. Itenberg, V. M. Kharlamov, E. I. Shustin, “New Cases of Logarithmic Equivalence of Welschinger and Gromov–Witten Invariants”, Analysis and singularities. Part 1, Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 258, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 70–78; Proc. Steklov Inst. Math., 258 (2007), 65–73
Linking options:
https://www.mathnet.ru/eng/tm477 https://www.mathnet.ru/eng/tm/v258/p70
|
Statistics & downloads: |
Abstract page: | 350 | Full-text PDF : | 107 | References: | 64 |
|