Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 326, Pages 26–42
DOI: https://doi.org/10.4213/tm4402
(Mi tm4402)
 

Mod $p$ Buchstaber Invariant

Djordje Baralića, Aleš Vavpetičbc, Aleksandar Vučićd

a Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
b Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
c Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
d Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
References:
Abstract: We investigate the $\operatorname {mod}\,p$ Buchstaber invariant of the skeletons of simplices for a prime number $p$ and compare such invariants for different values of $p$. For $p=2$, the invariant is the real Buchstaber invariant. Our findings reveal that their values are generally distinct. Additionally, we determine or estimate the $\operatorname {mod}\,p$ Buchstaber invariants of certain universal simplicial complexes $X(\mathbb F_p^n)$.
Keywords: Buchstaber invariant, simplicial complex, universal complex, toric topology.
Funding agency Grant number
Slovenian Research Agency P1-0292
J1-4031
Ministry of Education, Science and Sport of Slovenia research programme
All three authors were partially supported by the bilateral project “Discrete Morse theory and its applications” funded by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia and the Ministry of Education, Science and Sport of the Republic of Slovenia as a part of bilateral cooperation between the two countries (2020–2021). The second author was also supported by the Slovenian Research and Innovation Agency program P1-0292 and grant J1-4031.
Received: December 4, 2023
Revised: March 26, 2024
Accepted: June 7, 2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 326, Pages 21–36
DOI: https://doi.org/10.1134/S0081543824040035
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Djordje Baralić, Aleš Vavpetič, Aleksandar Vučić, “Mod $p$ Buchstaber Invariant”, Topology, Geometry, Combinatorics, and Mathematical Physics, Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 326, Steklov Math. Inst., Moscow, 2024, 26–42; Proc. Steklov Inst. Math., 326 (2024), 21–36
Citation in format AMSBIB
\Bibitem{BarVavVuc24}
\by Djordje~Barali\'c, Ale{\v s}~Vavpeti{\v c}, Aleksandar~Vu{\v c}i\'c
\paper Mod $p$ Buchstaber Invariant
\inbook Topology, Geometry, Combinatorics, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 326
\pages 26--42
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4402}
\crossref{https://doi.org/10.4213/tm4402}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 326
\pages 21--36
\crossref{https://doi.org/10.1134/S0081543824040035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-86000191733}
Linking options:
  • https://www.mathnet.ru/eng/tm4402
  • https://doi.org/10.4213/tm4402
  • https://www.mathnet.ru/eng/tm/v326/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :1
    References:14
    First page:6
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025