Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 326, Pages 15–25
DOI: https://doi.org/10.4213/tm4411
(Mi tm4411)
 

Complex cobordism modulo $c_1$-spherical cobordism and related genera

M. R. Bakuradze

Andrea Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
Abstract: We prove that the ideal in complex cobordism ring $\mathbf M\mathbf U^*$ generated by the polynomial generators $S=(x_1, x_k, k\geq 3)$ of $c_1$-spherical cobordism ring $W^*$, viewed as elements in $\mathbf M\mathbf U^*$ by forgetful map is prime. Using the Baas-Sullivan theory of cobordism with singularities we define a commutative complex oriented cohomology theory $\mathbf M\mathbf U^*_S(-)$, complex cobordism modulo $c_1$-spherical cobordism, with the coefficient ring $\mathbf M\mathbf U^*/S$. Then any $\Sigma\subseteq S$ is also regular in $\mathbf M\mathbf U^*$ and therefore gives a multiplicative complex oriented cohomology theory $\mathbf M\mathbf U^*_{\Sigma}(-)$. The generators of $W^*[1/2]$ can be specified in such a way that for $\Sigma=(x_k, k\geq 3)$ the corresponding cohomology is identical to the Abel cohomology, previously constructed in [BUSATO]. Another example corresponding to $\Sigma=(x_k, k\geq 5)$ gives the coefficient ring of the universal Buchstaber formal group law after tensored by $\mathbb{Z}[1/2]$, i.e., is identical to the scalar ring of the Krichever-Hoehn complex elliptic genus.
Keywords: сomplex bordism, $SU$-bordism, Formal group law, Complex elliptic genus.
Funding agency Grant number
Shota Rustaveli National Science Foundation FR-23-779
German Academic Exchange Service (DAAD) 2023(57655523)
The author was supported by Shota Rustaveli NSF grant FR-23-779 and EU fellowships for Georgian researchers, 2023(57655523).
Received: October 24, 2023
Revised: April 29, 2024
Accepted: June 6, 2024
Document Type: Article
Language: Russian
Citation: M. R. Bakuradze, “Complex cobordism modulo $c_1$-spherical cobordism and related genera”, Topology, Geometry, Combinatorics, and Mathematical Physics, Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 326, Steklov Math. Inst., Moscow, 2024, 15–25
Citation in format AMSBIB
\Bibitem{Bak24}
\by M.~R.~Bakuradze
\paper Complex cobordism modulo $c_1$-spherical cobordism and related genera
\inbook Topology, Geometry, Combinatorics, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 326
\pages 15--25
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4411}
\crossref{https://doi.org/10.4213/tm4411}
Linking options:
  • https://www.mathnet.ru/eng/tm4411
  • https://doi.org/10.4213/tm4411
  • https://www.mathnet.ru/eng/tm/v326/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:116
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024