Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 322, Pages 124–132
DOI: https://doi.org/10.4213/tm4315
(Mi tm4315)
 

Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves

A. T. Il'ichev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: The main result of the paper is a theorem stating that the modulation instability of a carrier periodic wave of small (but finite) amplitude propagating in an arbitrary dispersive medium may only be convective in a reference frame moving at a velocity that differs finitely from the group velocity of this wave. The application of this result to the radiation of a resonant wave by a soliton-like “core” is discussed. Such radiation occurs in media where classical solitary waves are replaced with generalized solitary waves as a result of linear resonance of long and short waves. Generalized solitary waves are traveling waves that form a homoclinic structure doubly asymptotic to a periodic wave.
Keywords: radiation of a resonant wave, convective modulation instability, central manifold, reduced system of equations, generalized solitary wave.
Funding agency Grant number
Russian Science Foundation 19-71-30012
This work was supported by the Russian Science Foundation under grant no. 19-71-30012, https://rscf.ru/en/project/19-71-30012/.
Received: January 21, 2023
Revised: February 28, 2023
Accepted: May 2, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 322, Pages 118–126
DOI: https://doi.org/10.1134/S0081543823040107
Bibliographic databases:
Document Type: Article
UDC: 532.591
Language: Russian
Citation: A. T. Il'ichev, “Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves”, Modern Methods of Mechanics, Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii, Trudy Mat. Inst. Steklova, 322, Steklov Math. Inst., Moscow, 2023, 124–132; Proc. Steklov Inst. Math., 322 (2023), 118–126
Citation in format AMSBIB
\Bibitem{Ili23}
\by A.~T.~Il'ichev
\paper Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves
\inbook Modern Methods of Mechanics
\bookinfo Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 322
\pages 124--132
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4315}
\crossref{https://doi.org/10.4213/tm4315}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 322
\pages 118--126
\crossref{https://doi.org/10.1134/S0081543823040107}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180247495}
Linking options:
  • https://www.mathnet.ru/eng/tm4315
  • https://doi.org/10.4213/tm4315
  • https://www.mathnet.ru/eng/tm/v322/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :17
    References:20
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024