Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 322, Pages 133–145
DOI: https://doi.org/10.4213/tm4326
(Mi tm4326)
 

On Linear Equations of Dynamics

V. V. Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We consider linear autonomous systems of second-order differential equations that do not contain first derivatives of independent variables. Such systems are often encountered in classical mechanics. Of particular interest are cases where external forces are not potential. An important special case is given by the equations of nonholonomic mechanics linearized in the vicinity of equilibria of the second kind. We show that linear systems of this type can always be represented as Lagrange and Hamilton equations, and these equations are completely integrable: they admit complete sets of independent involutive integrals that are quadratic or linear in velocity. The linear integrals are Noetherian: they appear due to nontrivial symmetry groups.
Keywords: Frobenius theorem, Lagrange equations, Hamiltonian systems, complete integrability, Noetherian integrals, equilibria of the second kind, Chaplygin sleigh.
Funding agency Grant number
Russian Science Foundation 19-71-30012
This work was supported by the Russian Science Foundation under grant no. 19-71-30012, https://rscf.ru/en/project/19-71-30012/.
Received: January 10, 2023
Revised: February 25, 2023
Accepted: April 18, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 322, Pages 127–139
DOI: https://doi.org/10.1134/S0081543823040119
Bibliographic databases:
Document Type: Article
UDC: 531.01
Language: Russian
Citation: V. V. Kozlov, “On Linear Equations of Dynamics”, Modern Methods of Mechanics, Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii, Trudy Mat. Inst. Steklova, 322, Steklov Math. Inst., Moscow, 2023, 133–145; Proc. Steklov Inst. Math., 322 (2023), 127–139
Citation in format AMSBIB
\Bibitem{Koz23}
\by V.~V.~Kozlov
\paper On Linear Equations of Dynamics
\inbook Modern Methods of Mechanics
\bookinfo Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 322
\pages 133--145
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4326}
\crossref{https://doi.org/10.4213/tm4326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2400528}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 322
\pages 127--139
\crossref{https://doi.org/10.1134/S0081543823040119}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180214159}
Linking options:
  • https://www.mathnet.ru/eng/tm4326
  • https://doi.org/10.4213/tm4326
  • https://www.mathnet.ru/eng/tm/v322/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :9
    References:22
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024