Abstract:
The Bott–Thurston cocycle is a $2$-cocycle on the group of orientation-preserving diffeomorphisms of the circle. We introduce and study a formal analog of the Bott–Thurston cocycle. The formal Bott–Thurston cocycle is a $2$-cocycle on the group of continuous $A$-automorphisms of the algebra $A((t))$ of Laurent series over a commutative ring $A$ with values in the group $A^*$ of invertible elements of $A$. We prove that the central extension given by the formal Bott–Thurston cocycle is equivalent to the 12-fold Baer sum of the determinantal central extension when $A$ is a $\mathbb Q$-algebra. As a consequence of this result we prove a part of a new formal Riemann–Roch theorem. This Riemann–Roch theorem is applied to a ringed space on a separated scheme $S$ over $\mathbb Q$, where the structure sheaf of the ringed space is locally on $S$ isomorphic to the sheaf $\mathcal O_S((t))$ and the transition automorphisms are continuous. Locally on $S$ this ringed space corresponds to the punctured formal neighborhood of a section of a smooth morphism to $U$ of relative dimension $1$, where $U \subset S$ is an open subset.
Citation:
D. V. Osipov, “Formal Bott–Thurston Cocycle and Part of a Formal Riemann–Roch Theorem”, Algebra and Arithmetic, Algebraic, and Complex Geometry, Collected papers. In memory of Academician Alexey Nikolaevich Parshin, Trudy Mat. Inst. Steklova, 320, Steklov Math. Inst., Moscow, 2023, 243–277; Proc. Steklov Inst. Math., 320 (2023), 226–257