Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 320, Pages 278–286
DOI: https://doi.org/10.4213/tm4283
(Mi tm4283)
 

New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields

V. P. Platonovab, M. M. Petruninb

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Nakhimovskii prosp. 36, bld. 1, Moscow, 117218 Russia
References:
Abstract: We study the problem of describing square-free polynomials $f(x)$ of odd degree with periodic expansion of $\sqrt {f(x)}$ into a functional continued fraction in $k((x))$, where $k\subseteq \overline {\mathbb Q}$. We obtain a complete description of such polynomials $f(x)$ that does not depend on the field $k$ and the degree of a polynomial, provided that the degree $U$ of the fundamental $S$-unit of the corresponding hyperelliptic field $k(x)(\sqrt {f(x)})$ either does not exceed $12$ or is even and does not exceed $20$.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FNEF-2022-0011
This work was performed within the state assignment for basic scientific research, project no. FNEF-2022-0011.
Received: April 3, 2022
Revised: May 23, 2022
Accepted: June 2, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 320, Pages 258–266
DOI: https://doi.org/10.1134/S008154382301011X
Bibliographic databases:
Document Type: Article
UDC: 511.6+511.2
Language: Russian
Citation: V. P. Platonov, M. M. Petrunin, “New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields”, Algebra and Arithmetic, Algebraic, and Complex Geometry, Collected papers. In memory of Academician Alexey Nikolaevich Parshin, Trudy Mat. Inst. Steklova, 320, Steklov Math. Inst., Moscow, 2023, 278–286; Proc. Steklov Inst. Math., 320 (2023), 258–266
Citation in format AMSBIB
\Bibitem{PlaPet23}
\by V.~P.~Platonov, M.~M.~Petrunin
\paper New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
\inbook Algebra and Arithmetic, Algebraic, and Complex Geometry
\bookinfo Collected papers. In memory of Academician Alexey Nikolaevich Parshin
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 320
\pages 278--286
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4283}
\crossref{https://doi.org/10.4213/tm4283}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 320
\pages 258--266
\crossref{https://doi.org/10.1134/S008154382301011X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85161058041}
Linking options:
  • https://www.mathnet.ru/eng/tm4283
  • https://doi.org/10.4213/tm4283
  • https://www.mathnet.ru/eng/tm/v320/p278
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :15
    References:19
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024