Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 318, Pages 17–30
DOI: https://doi.org/10.4213/tm4295
(Mi tm4295)
 

This article is cited in 2 scientific papers (total in 2 papers)

Homogeneous Algebraic Varieties and Transitivity Degree

Ivan V. Arzhantsev, Yulia I. Zaitseva, Kirill V. Shakhmatov

Faculty of Computer Science, HSE University, Pokrovskii bul. 11, Moscow, 109028 Russia
Full-text PDF (256 kB) Citations (2)
References:
Abstract: Let $X$ be an algebraic variety such that the group $\mathrm {Aut}(X)$ acts on $X$ transitively. We define the transitivity degree of $X$ as the maximum number $m$ such that the action of $\mathrm {Aut}(X)$ on $X$ is $m$-transitive. If the action of $\mathrm {Aut}(X)$ is $m$-transitive for all $m$, the transitivity degree is infinite. We compute the transitivity degree for all quasi-affine toric varieties and for many homogeneous spaces of algebraic groups. We also discuss a conjecture and open questions related to this invariant.
Keywords: algebraic variety, automorphism group, algebraic group, homogeneous space, quasi-affine variety, transitivity degree, infinite transitivity, toric variety, unirationality.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-289
This work was performed at the Euler International Mathematical Institute and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-289).
Received: April 6, 2022
Revised: June 24, 2022
Accepted: June 30, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 318, Pages 13–25
DOI: https://doi.org/10.1134/S0081543822040022
Bibliographic databases:
Document Type: Article
UDC: 512.745
Language: Russian
Citation: Ivan V. Arzhantsev, Yulia I. Zaitseva, Kirill V. Shakhmatov, “Homogeneous Algebraic Varieties and Transitivity Degree”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Collected papers, Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow, 2022, 17–30; Proc. Steklov Inst. Math., 318 (2022), 13–25
Citation in format AMSBIB
\Bibitem{ArzZaiSha22}
\by Ivan~V.~Arzhantsev, Yulia~I.~Zaitseva, Kirill~V.~Shakhmatov
\paper Homogeneous Algebraic Varieties and Transitivity Degree
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~2
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 318
\pages 17--30
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4295}
\crossref{https://doi.org/10.4213/tm4295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538832}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 318
\pages 13--25
\crossref{https://doi.org/10.1134/S0081543822040022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142144986}
Linking options:
  • https://www.mathnet.ru/eng/tm4295
  • https://doi.org/10.4213/tm4295
  • https://www.mathnet.ru/eng/tm/v318/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :45
    References:44
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024