Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 318, Pages 5–16
DOI: https://doi.org/10.4213/tm4281
(Mi tm4281)
 

Homology of the $MSU$ Spectrum

Semyon A. Abramyanab

a Skolkovo Institute of Science and Technology, Bol'shoi bul. 30, stroenie 1, Moscow, 121205 Russia
b Laboratory of Algebraic Geometry and Its Applications, HSE University, ul. Usacheva 6, Moscow, 119048 Russia
References:
Abstract: We give a complete proof of the Novikov isomorphism $\varOmega ^{{SU}}\otimes \mathbb Z \bigl [\tfrac 12\bigr ]\cong \mathbb Z\bigl [\tfrac 12\bigr ] [y_2,y_3,\ldots ]$, $\deg y_i=2i$, where $\varOmega ^{{SU}}$ is the ${SU}$-bordism ring. The proof uses the Adams spectral sequence and a description of the comodule structure of $H_{\scriptscriptstyle\bullet}({M\kern -1pt SU};\mathbb F_p)$ over the dual Steenrod algebra $\mathfrak A_p^*$ with odd prime $p$, which was also missing in the literature.
Funding agency Grant number
Russian Science Foundation 21-71-00049
This work is supported by the Russian Science Foundation under grant no. 21-71-00049, https://rscf.ru/project/21-71-00049/.
Received: March 17, 2022
Revised: May 27, 2022
Accepted: June 20, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 318, Pages 1–12
DOI: https://doi.org/10.1134/S0081543822040010
Bibliographic databases:
Document Type: Article
UDC: 515.146.6
MSC: 55N22, 55S10, 57R77
Language: Russian
Citation: Semyon A. Abramyan, “Homology of the $MSU$ Spectrum”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Collected papers, Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow, 2022, 5–16; Proc. Steklov Inst. Math., 318 (2022), 1–12
Citation in format AMSBIB
\Bibitem{Abr22}
\by Semyon~A.~Abramyan
\paper Homology of the $MSU$ Spectrum
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~2
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 318
\pages 5--16
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4281}
\crossref{https://doi.org/10.4213/tm4281}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538831}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 318
\pages 1--12
\crossref{https://doi.org/10.1134/S0081543822040010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142236113}
Linking options:
  • https://www.mathnet.ru/eng/tm4281
  • https://doi.org/10.4213/tm4281
  • https://www.mathnet.ru/eng/tm/v318/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :32
    References:27
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024