Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 317, Pages 5–26
DOI: https://doi.org/10.4213/tm4289
(Mi tm4289)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory

Anton A. Ayzenberga, Mikiya Masudab, Takashi Satobc

a Faculty of Computer Science, HSE University, Pokrovskii bul. 11, Moscow, 109028 Russia
b Osaka City University Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
c Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Full-text PDF (315 kB) Citations (1)
References:
Abstract: We describe the second cohomology of a regular semisimple Hessenberg variety by generators and relations explicitly in terms of GKM theory. The cohomology of a regular semisimple Hessenberg variety becomes a module of a symmetric group $\mathfrak {S}_n$ by the dot action introduced by Tymoczko. As an application of our explicit description, we give a formula describing the isomorphism class of the second cohomology as an $\mathfrak {S}_n$-module. Our formula is not exactly the same as the known formula by Chow or Cho, Hong, and Lee, but they are equivalent. We also discuss its higher degree generalization.
Keywords: Hessenberg variety, torus action, GKM theory, equivariant cohomology, permutation module.
Funding agency Grant number
HSE Basic Research Program
The work of the first and second authors was performed within the framework of the HSE University Basic Research Program.
Received: March 18, 2022
Revised: June 1, 2022
Accepted: June 21, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 317, Pages 1–20
DOI: https://doi.org/10.1134/S0081543822020018
Bibliographic databases:
Document Type: Article
UDC: 515.142.211
Language: Russian
Citation: Anton A. Ayzenberg, Mikiya Masuda, Takashi Sato, “The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Collected papers, Trudy Mat. Inst. Steklova, 317, Steklov Math. Inst., М., 2022, 5–26; Proc. Steklov Inst. Math., 317 (2022), 1–20
Citation in format AMSBIB
\Bibitem{AyzMasSat22}
\by Anton~A.~Ayzenberg, Mikiya~Masuda, Takashi~Sato
\paper The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~1
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 317
\pages 5--26
\publ Steklov Math. Inst.
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm4289}
\crossref{https://doi.org/10.4213/tm4289}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 317
\pages 1--20
\crossref{https://doi.org/10.1134/S0081543822020018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85141970380}
Linking options:
  • https://www.mathnet.ru/eng/tm4289
  • https://doi.org/10.4213/tm4289
  • https://www.mathnet.ru/eng/tm/v317/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :28
    References:66
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024