Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 317, Pages 27–63
DOI: https://doi.org/10.4213/tm4278
(Mi tm4278)
 

This article is cited in 2 scientific papers (total in 2 papers)

Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$

V. M. Buchstaberab, S. Terzićc

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b National Research University Higher School of Economics, Pokrovskii bul. 11, Moscow, 109028 Russia
c Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb., 81000 Podgorica, Montenegro
Full-text PDF (457 kB) Citations (2)
References:
Abstract: We study the orbit space $X_n = G_{n,2}/T^n$ of the standard action of the compact torus $T^n$ on the complex Grassmann manifold $G_{n,2}$. We describe the structure of the set of critical points $\operatorname {Crit}G_{n,2}$ of the generalized moment map $\mu _n: G_{n,2}\to \mathbb {R}^n$ whose image is a hypersimplex $\Delta _{n,2}$. The canonical projection $G_{n,2}\to X_n$ maps the set $\operatorname {Crit} G_{n,2}$ to the set $\operatorname {Crit}X_n$, which by definition consists of the orbits $x\in X_n$ with nontrivial stabilizer subgroup in $T^{n-1}=T^n/S^1$, where $S^1\subset T^n$ is the diagonal one-dimensional torus. Introducing the notion of a singular point $x\in \operatorname {Sing}X_n \subset X_n$ in terms of the parameter spaces of the orbits, we prove that the set $Y_n = X_n\setminus \operatorname {Sing}X_n$ is an open manifold and is dense in $X_n$. We show that $\operatorname {Crit}X_n \subset \operatorname {Sing}X_n$ for $n>4$, but $\operatorname {Sing}X_4\subset \operatorname {Crit}X_4$. Our central result is the construction of a projection $p_n: U_n= \mathcal {F}_n\times \Delta _{n,2}\to X_n$, $\dim U_n = \dim X_n$, where $\mathcal {F}_n$ is a universal parameter space. Earlier, we have proved that $\mathcal {F}_n$ is a closed smooth manifold diffeomorphic to a known manifold $\,\overline {\!\mathcal {M}}(0,n)$. We show that the map $p_n: Z_n = p_n^{-1}(Y_n)\to Y_n$ is a diffeomorphism, and describe the structure of the sets $p_n^{-1}(x)$ for $x\in \operatorname {Sing}X_n$.
Keywords: Grassmann manifold, torus action, chamber decomposition of a hypersimplex, orbit space, universal parameter space.
Funding agency Grant number
HSE Basic Research Program
Montenegrin Academy of Sciences and Arts
The work of the first author was supported by the HSE University Basic Research Program. The second author was supported by the Montenegrin Academy of Sciences and Arts.
Received: April 7, 2022
Revised: May 24, 2022
Accepted: June 3, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 317, Pages 21–54
DOI: https://doi.org/10.1134/S008154382202002X
Bibliographic databases:
Document Type: Article
UDC: 515.164.8+515.164.22+515.165.2
Language: Russian
Citation: V. M. Buchstaber, S. Terzić, “Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Collected papers, Trudy Mat. Inst. Steklova, 317, Steklov Math. Inst., М., 2022, 27–63; Proc. Steklov Inst. Math., 317 (2022), 21–54
Citation in format AMSBIB
\Bibitem{BucTer22}
\by V.~M.~Buchstaber, S.~Terzi\'c
\paper Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~1
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 317
\pages 27--63
\publ Steklov Math. Inst.
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm4278}
\crossref{https://doi.org/10.4213/tm4278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538822}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 317
\pages 21--54
\crossref{https://doi.org/10.1134/S008154382202002X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85141968975}
Linking options:
  • https://www.mathnet.ru/eng/tm4278
  • https://doi.org/10.4213/tm4278
  • https://www.mathnet.ru/eng/tm/v317/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024