Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 320, Pages 71–102
DOI: https://doi.org/10.4213/tm4269
(Mi tm4269)
 

A Pro-algebraic Fundamental Group for Topological Spaces

Christopher Deninger

Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
References:
Abstract: Consider a connected topological space $X$ with a point $x$ in $X$ and let $K$ be a field with the discrete topology. We study the Tannakian category of finite-dimensional (flat) vector bundles on $X$ and its Tannakian dual $\pi (X,x)$ with respect to the fiber functor in $x$. The maximal pro-étale quotient of $\pi (X,x)$ is the étale fundamental group of $X$ studied by Kucharczyk and Scholze. For well-behaved topological spaces, $\pi (X,x)$ is the pro-algebraic completion of the ordinary fundamental group. We obtain some structural results on $\pi (X,x)$ for very general topological spaces by studying (pseudo)torsors attached to its quotients. This approach uses ideas of Nori in algebraic geometry and a result of Deligne on Tannakian categories. We also calculate $\pi (X,x)$ for some generalized solenoids.
Funding agency Grant number
Deutsche Forschungsgemeinschaft 2044-390685587
The work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics–Geometry–Structure.
Received: January 4, 2022
Revised: March 12, 2022
Accepted: April 14, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 320, Pages 62–90
DOI: https://doi.org/10.1134/S0081543823010054
Bibliographic databases:
Document Type: Article
UDC: 512.74
Language: Russian
Citation: Christopher Deninger, “A Pro-algebraic Fundamental Group for Topological Spaces”, Algebra and Arithmetic, Algebraic, and Complex Geometry, Collected papers. In memory of Academician Alexey Nikolaevich Parshin, Trudy Mat. Inst. Steklova, 320, Steklov Math. Inst., Moscow, 2023, 71–102; Proc. Steklov Inst. Math., 320 (2023), 62–90
Citation in format AMSBIB
\Bibitem{Den23}
\by Christopher~Deninger
\paper A Pro-algebraic Fundamental Group for Topological Spaces
\inbook Algebra and Arithmetic, Algebraic, and Complex Geometry
\bookinfo Collected papers. In memory of Academician Alexey Nikolaevich Parshin
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 320
\pages 71--102
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4269}
\crossref{https://doi.org/10.4213/tm4269}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 320
\pages 62--90
\crossref{https://doi.org/10.1134/S0081543823010054}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85161064947}
Linking options:
  • https://www.mathnet.ru/eng/tm4269
  • https://doi.org/10.4213/tm4269
  • https://www.mathnet.ru/eng/tm/v320/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :25
    References:31
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024