Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 320, Pages 103–127
DOI: https://doi.org/10.4213/tm4260
(Mi tm4260)
 

This article is cited in 2 scientific papers (total in 2 papers)

Surjectivity of the Étale Excision Map for Homotopy Invariant Framed Presheaves

Andrei E. Druzhininab, Ivan A. Panina

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, St. Petersburg, 191023 Russia
b Chebyshev Laboratory, St. Petersburg State University, 14th Line 29, Vasilyevsky Island, St. Petersburg, 199178 Russia
Full-text PDF (423 kB) Citations (2)
References:
Abstract: The categories of framed correspondences, framed presheaves, and framed sheaves were introduced by V. Voevodsky in his foundational “Notes on framed correspondences.” Based on these notes, G. Garkusha and I. Panin proposed a totally new approach to the stable motivic homotopy category $\mathrm {SH}(k)$. Their new description of the classical category $\mathrm {SH}(k)$ uses only local equivalences provided that $k$ is an infinite perfect field and the characteristic of $k$ is not $2$. The main aim of the present paper is to extend Garkusha and Panin's fundamental result on framed presheaves to all infinite perfect fields (including characteristic $2$). As a corollary, the local description of the category $\mathrm {SH}(k)$ is automatically valid without any restrictions on the characteristic of the base field. The heart of the present paper is the proof of the homotopy invariance of the Nisnevich sheaf $\mathcal F_{\mathrm{Nis}}$ associated to any homotopy invariant radditive quasi-stable framed presheaf $\mathcal F$ of abelian groups. Then, applying literally Garkusha and Panin's arguments, we deduce the strict homotopy invariance of the Nisnevich sheaf $\mathcal F_{\mathrm{Nis}}$.
Funding agency Grant number
Research Council of Norway 250399
Gazprom Neft
The work was supported by the RCN Frontier research group project no. 250399 “Motivic Hopf equations” at the University of Oslo. The first author was also supported by the social investments program “Hometown Cities” of PAO “Gazprom Neft.”
Received: July 13, 2021
Revised: December 4, 2021
Accepted: March 16, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 320, Pages 91–114
DOI: https://doi.org/10.1134/S0081543823010066
Bibliographic databases:
Document Type: Article
UDC: 512.73+514.7+515.14
Language: Russian
Citation: Andrei E. Druzhinin, Ivan A. Panin, “Surjectivity of the Étale Excision Map for Homotopy Invariant Framed Presheaves”, Algebra and Arithmetic, Algebraic, and Complex Geometry, Collected papers. In memory of Academician Alexey Nikolaevich Parshin, Trudy Mat. Inst. Steklova, 320, Steklov Math. Inst., Moscow, 2023, 103–127; Proc. Steklov Inst. Math., 320 (2023), 91–114
Citation in format AMSBIB
\Bibitem{DruPan23}
\by Andrei~E.~Druzhinin, Ivan~A.~Panin
\paper Surjectivity of the \'Etale Excision Map for Homotopy Invariant Framed Presheaves
\inbook Algebra and Arithmetic, Algebraic, and Complex Geometry
\bookinfo Collected papers. In memory of Academician Alexey Nikolaevich Parshin
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 320
\pages 103--127
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4260}
\crossref{https://doi.org/10.4213/tm4260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582615}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 320
\pages 91--114
\crossref{https://doi.org/10.1134/S0081543823010066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85161019601}
Linking options:
  • https://www.mathnet.ru/eng/tm4260
  • https://doi.org/10.4213/tm4260
  • https://www.mathnet.ru/eng/tm/v320/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :17
    References:31
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024