Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 320, Pages 27–45
DOI: https://doi.org/10.4213/tm4259
(Mi tm4259)
 

This article is cited in 2 scientific papers (total in 2 papers)

Simple Complex Tori of Algebraic Dimension 0

Tatiana Bandmana, Yuri G. Zarhinb

a Department of Mathematics, Bar-Ilan University, Ramat Gan, 5290002, Israel
b Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
Full-text PDF (336 kB) Citations (2)
References:
Abstract: Using Galois theory, we explicitly construct (in all complex dimensions $g\ge 2$) an infinite family of simple $g$-dimensional complex tori $T$ that enjoy the following properties:
$\bullet $ the Picard number of $T$ is $0;$ in particular, the algebraic dimension of $T$ is $0$;
$\bullet $ if $T^\vee $ is the dual of $T$, then $\mathrm {Hom}(T,T^\vee )=\{0\}$;
$\bullet $ the automorphism group $\mathrm {Aut}(T)$ of $T$ is isomorphic to $\{\pm 1\} \times \mathbb Z^{g-1}$;
$\bullet $ the endomorphism algebra $\mathrm {End}^0(T)$ of $T$ is a purely imaginary number field of degree $2g$.
Keywords: complex tori, algebraic dimension 0.
Funding agency Grant number
Simons Foundation 585711
The second author was partially supported by the Simons Foundation Collaboration Grant no. 585711.
Received: June 18, 2021
Revised: May 8, 2022
Accepted: May 10, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 320, Pages 21–38
DOI: https://doi.org/10.1134/S0081543823010029
Bibliographic databases:
Document Type: Article
UDC: 515.177.4
Language: Russian
Citation: Tatiana Bandman, Yuri G. Zarhin, “Simple Complex Tori of Algebraic Dimension 0”, Algebra and Arithmetic, Algebraic, and Complex Geometry, Collected papers. In memory of Academician Alexey Nikolaevich Parshin, Trudy Mat. Inst. Steklova, 320, Steklov Math. Inst., Moscow, 2023, 27–45; Proc. Steklov Inst. Math., 320 (2023), 21–38
Citation in format AMSBIB
\Bibitem{BanZar23}
\by Tatiana~Bandman, Yuri~G.~Zarhin
\paper Simple Complex Tori of Algebraic Dimension 0
\inbook Algebra and Arithmetic, Algebraic, and Complex Geometry
\bookinfo Collected papers. In memory of Academician Alexey Nikolaevich Parshin
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 320
\pages 27--45
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4259}
\crossref{https://doi.org/10.4213/tm4259}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 320
\pages 21--38
\crossref{https://doi.org/10.1134/S0081543823010029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85152536920}
Linking options:
  • https://www.mathnet.ru/eng/tm4259
  • https://doi.org/10.4213/tm4259
  • https://www.mathnet.ru/eng/tm/v320/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :24
    References:23
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024