Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 320, Pages 5–26
DOI: https://doi.org/10.4213/tm4254
(Mi tm4254)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Bernstein Centre in Natural Characteristic

Konstantin Ardakova, Peter Schneiderb

a Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
b Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
Full-text PDF (362 kB) Citations (1)
References:
Abstract: Let $G$ be a locally profinite group and let $k$ be a field of positive characteristic $p$. Let $Z(G)$ denote the centre of $G$ and let $\mathfrak Z(G)$ denote the Bernstein centre of $G$, that is, the $k$-algebra of natural endomorphisms of the identity functor on the category of smooth $k$-linear representations of $G$. We show that if $G$ contains an open pro-$p$ subgroup but no proper open centralisers, then there is a natural isomorphism of $k$-algebras $\mathfrak Z(Z(G)) \xrightarrow {\cong } \mathfrak Z(G)$. We also describe $\mathfrak Z(Z(G))$ explicitly as a particular completion of the abstract group ring $k[Z(G)]$. Both conditions on $G$ are satisfied whenever $G$ is the group of points of any connected smooth algebraic group defined over a local field of residue characteristic $p$. In particular, when the algebraic group is semisimple, we show that $\mathfrak Z(G) = k[Z(G)]$.
Funding agency Grant number
Deutsche Forschungsgemeinschaft 2044-390685587
The second author acknowledges support from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics–Geometry–Structure.
Received: June 4, 2021
Revised: October 21, 2021
Accepted: February 17, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 320, Pages 1–20
DOI: https://doi.org/10.1134/S0081543823010017
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: Konstantin Ardakov, Peter Schneider, “The Bernstein Centre in Natural Characteristic”, Algebra and Arithmetic, Algebraic, and Complex Geometry, Collected papers. In memory of Academician Alexey Nikolaevich Parshin, Trudy Mat. Inst. Steklova, 320, Steklov Math. Inst., Moscow, 2023, 5–26; Proc. Steklov Inst. Math., 320 (2023), 1–20
Citation in format AMSBIB
\Bibitem{ArdSch23}
\by Konstantin~Ardakov, Peter~Schneider
\paper The Bernstein Centre in Natural Characteristic
\inbook Algebra and Arithmetic, Algebraic, and Complex Geometry
\bookinfo Collected papers. In memory of Academician Alexey Nikolaevich Parshin
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 320
\pages 5--26
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4254}
\crossref{https://doi.org/10.4213/tm4254}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 320
\pages 1--20
\crossref{https://doi.org/10.1134/S0081543823010017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85153781242}
Linking options:
  • https://www.mathnet.ru/eng/tm4254
  • https://doi.org/10.4213/tm4254
  • https://www.mathnet.ru/eng/tm/v320/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :18
    References:31
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024