Abstract:
We study the solvability of an equation generated by a mapping acting from a metric space into a normed space. For the radii of balls lying in the image of the mapping, we obtain an estimate in terms of covering mappings. Applying this result, we find conditions for the existence of coincidence points of two mappings.
This work was supported by a grant of the President of the Russian Federation (project no. MD-2658.2021.1.1). Theorem 1 was obtained by the first author under the support of the Russian Science Foundation (grant no. 20-11-20131).
Citation:
A. V. Arutyunov, S. E. Zhukovskiy, “Covering Mappings Acting into Normed Spaces and Coincidence Points”, Optimal Control and Differential Games, Collected papers, Trudy Mat. Inst. Steklova, 315, Steklov Math. Inst., Moscow, 2021, 19–25; Proc. Steklov Inst. Math., 315 (2021), 13–18
\Bibitem{AruZhu21}
\by A.~V.~Arutyunov, S.~E.~Zhukovskiy
\paper Covering Mappings Acting into Normed Spaces and Coincidence Points
\inbook Optimal Control and Differential Games
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 315
\pages 19--25
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4233}
\crossref{https://doi.org/10.4213/tm4233}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\pages 13--18
\crossref{https://doi.org/10.1134/S0081543821050023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745120000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123368262}
Linking options:
https://www.mathnet.ru/eng/tm4233
https://doi.org/10.4213/tm4233
https://www.mathnet.ru/eng/tm/v315/p19
This publication is cited in the following 2 articles:
N. S. Borzov, T. V. Zhukovskaya, I. D. Serova, “Obyknovennye differentsialnye uravneniya i differentsialnye uravneniya s zapazdyvaniem: obschie svoistva i osobennosti”, Vestnik rossiiskikh universitetov. Matematika, 28:142 (2023), 137–154
E. Zhukovskiy, E. Panasenko, “Extension of the Kantorovich theorem to equations in vector metric spaces: applications to functional differential equations”, Mathematics, 12:1 (2023), 64