Abstract:
We prove a sufficiently general implicit function theorem for mappings that are close to an original one in the uniform metric of the space of continuous mappings. As a corollary, we derive an important (for applications) result related to perturbations of linear mappings.
Keywords:
implicit function, close mappings, metric regularity.
Citation:
E. R. Avakov, G. G. Magaril-Il'yaev, “General Implicit Function Theorem for Close Mappings”, Optimal Control and Differential Games, Collected papers, Trudy Mat. Inst. Steklova, 315, Steklov Math. Inst., Moscow, 2021, 7–18; Proc. Steklov Inst. Math., 315 (2021), 1–12
\Bibitem{AvaMag21}
\by E.~R.~Avakov, G.~G.~Magaril-Il'yaev
\paper General Implicit Function Theorem for Close Mappings
\inbook Optimal Control and Differential Games
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 315
\pages 7--18
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4229}
\crossref{https://doi.org/10.4213/tm4229}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\pages 1--12
\crossref{https://doi.org/10.1134/S0081543821050011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745120000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123343400}
Linking options:
https://www.mathnet.ru/eng/tm4229
https://doi.org/10.4213/tm4229
https://www.mathnet.ru/eng/tm/v315/p7
This publication is cited in the following 6 articles:
E. R. Avakov, G. G. Magaril-Il'yaev, “Controllability of an approximately defined control system”, Sb. Math., 215:4 (2024), 438–463
E. R. Avakov, G. G. Magaril-Il'yaev, “Schauder's fixed point theorem and Pontryagin maximum principle”, Izv. Math., 88:6 (2024), 1013–1031
A. A. Vasileva, A. V. Gorshkov, M. P. Zapletin, L. V. Lokutsievskii, G. G. Magaril-Ilyaev, K. Yu. Osipenko, K. S. Ryutin, A. V. Fursikov, “Ob osnovnykh nauchnykh rezultatakh poslednego vremeni sotrudnikov kafedry obschikh problem upravleniya”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 64–71
A. A. Vasil'eva, A. V. Gorshkov, M. P. Zapletin, L. V. Lokutsievskiy, G. G. Magaril-Il'yaev, K. Yu. Osipenko, K. S. Ryutin, A. V. Fursikov, “Main recent research results of the staff of the Chair of General Problems of Control”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:6 (2024), 351–359
E. R. Avakov, G. G. Magaril-Il'yaev, “On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions”, Math. Notes, 114:1 (2023), 3–14
A. V. Arutyunov, Z. T. Zhukovskaya, S. E. Zhukovskiy, “On the existence of admissible positional controls for systems with mixed constraints”, 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (Moscow, Russian Federation, 2022), 2022, 1–3