Abstract:
Let Sn be the semigroup of mappings of an n-element set X into itself. For a set D⊆N, denote by Sn(D) the family of those mappings in Sn whose component sizes belong to D. Suppose that a random mapping σn=σn(D) is uniformly distributed on Sn(D). We consider a class of sets D⊆N with positive densities in the set N of positive integers. Let ζn be the number of components of the random mapping σn. We find asymptotic formulas for the expectation and variance of the random variable ζn as n→∞.
Keywords:
random mappings, total number of components of a random mapping.
Citation:
A. L. Yakymiv, “Moment Characteristics of a Random Mapping with Restrictions on Component Sizes”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 376–389; Proc. Steklov Inst. Math., 316 (2022), 356–369
\Bibitem{Yak22}
\by A.~L.~Yakymiv
\paper Moment Characteristics of a Random Mapping with Restrictions on Component Sizes
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 376--389
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4214}
\crossref{https://doi.org/10.4213/tm4214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461489}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 356--369
\crossref{https://doi.org/10.1134/S0081543822010242}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140722386}
Linking options:
https://www.mathnet.ru/eng/tm4214
https://doi.org/10.4213/tm4214
https://www.mathnet.ru/eng/tm/v316/p376
This publication is cited in the following 1 articles:
A. L. Yakymiv, “O sluchainykh otobrazheniyakh s ogranicheniyami na razmery komponent”, Diskret. matem., 35:3 (2023), 143–163