Abstract:
Let $\mathfrak {S}_n$ be the semigroup of mappings of an $n$-element set $X$ into itself. For a set $D\subseteq \mathbb N$, denote by $\mathfrak {S}_n(D)$ the family of those mappings in $\mathfrak {S}_n$ whose component sizes belong to $D$. Suppose that a random mapping $\sigma _n=\sigma _n(D)$ is uniformly distributed on $\mathfrak {S}_n(D)$. We consider a class of sets $D\subseteq \mathbb N$ with positive densities in the set $\mathbb N$ of positive integers. Let $\zeta _n$ be the number of components of the random mapping $\sigma _n$. We find asymptotic formulas for the expectation and variance of the random variable $\zeta _n$ as $n\to \infty $.
Keywords:random mappings, total number of components of a random mapping.
Citation:
A. L. Yakymiv, “Moment Characteristics of a Random Mapping with Restrictions on Component Sizes”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 376–389; Proc. Steklov Inst. Math., 316 (2022), 356–369
\Bibitem{Yak22}
\by A.~L.~Yakymiv
\paper Moment Characteristics of a Random Mapping with Restrictions on Component Sizes
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 376--389
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4214}
\crossref{https://doi.org/10.4213/tm4214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461489}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 356--369
\crossref{https://doi.org/10.1134/S0081543822010242}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140722386}
Linking options:
https://www.mathnet.ru/eng/tm4214
https://doi.org/10.4213/tm4214
https://www.mathnet.ru/eng/tm/v316/p376
This publication is cited in the following 1 articles: