Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 316, Pages 355–375
DOI: https://doi.org/10.4213/tm4206
(Mi tm4206)
 

Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family

V. A. Vatutin, C. Smadi

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We consider a critical branching process $\{Y_n,\,n\geq 0\}$ in an i.i.d. random environment in which one immigrant arrives at each generation. Let $\mathcal A_i(n)$ be the event that all individuals alive at time $n$ are offspring of the immigrant which joined the population at time $i$. We study the conditional distribution of $Y_n$ given $\mathcal A_i(n)$ when $n$ is large and $i$ follows different asymptotics which may be related to $n$ ($i$ fixed, close to $n$, or going to infinity but far from $n$).
Keywords: branching process, random environment, immigration, conditioned random walk.
Funding agency Grant number
Russian Science Foundation 19-11-00111
This work is supported by the Russian Science Foundation under grant 19-11-00111.
Received: March 10, 2021
Revised: May 1, 2021
Accepted: October 11, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 316, Pages 336–355
DOI: https://doi.org/10.1134/S0081543822010230
Bibliographic databases:
Document Type: Article
UDC: 519.218.25
Language: Russian
Citation: V. A. Vatutin, C. Smadi, “Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 355–375; Proc. Steklov Inst. Math., 316 (2022), 336–355
Citation in format AMSBIB
\Bibitem{VatSma22}
\by V.~A.~Vatutin, C.~Smadi
\paper Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 355--375
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4206}
\crossref{https://doi.org/10.4213/tm4206}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 336--355
\crossref{https://doi.org/10.1134/S0081543822010230}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129013723}
Linking options:
  • https://www.mathnet.ru/eng/tm4206
  • https://doi.org/10.4213/tm4206
  • https://www.mathnet.ru/eng/tm/v316/p355
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :41
    References:45
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024