Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 313, Pages 23–32
DOI: https://doi.org/10.4213/tm4195
(Mi tm4195)
 

On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function

L. A. Borisova, Yu. N. Orlovab

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
b Mechanical Engineering Research Institute of the Russian Academy of Sciences, Malyi Khariton'evskii per. 4, Moscow, 101990 Russia
References:
Abstract: We consider the inversion problem for linear quantization defined by an integral transformation relating the matrix of a quantum operator to its classical symbol. For an arbitrary linear quantization, we construct evolution equations for the density matrix and the Wigner function. It is shown that the Weyl quantization is the only one for which the evolution equation of the Wigner function is free of a quasi-probability source, which distinguishes this quantization as the only physically adequate one in the class under consideration. As an example, we give an exact stationary solution for the Wigner function of a harmonic oscillator with an arbitrary linear quantization, and construct a sequence of quantizations that approximate the Weyl quantization and tend to it in the weak sense so that the Wigner function remains positive definite.
Keywords: approximating quantization, inverse quantization, Wigner function, evolution equation, stationary solution.
Received: January 20, 2021
Revised: February 5, 2021
Accepted: March 29, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 313, Pages 17–26
DOI: https://doi.org/10.1134/S0081543821020036
Bibliographic databases:
Document Type: Article
UDC: 517.972
Language: Russian
Citation: L. A. Borisov, Yu. N. Orlov, “On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 23–32; Proc. Steklov Inst. Math., 313 (2021), 17–26
Citation in format AMSBIB
\Bibitem{BorOrl21}
\by L.~A.~Borisov, Yu.~N.~Orlov
\paper On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 23--32
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4195}
\crossref{https://doi.org/10.4213/tm4195}
\elib{https://elibrary.ru/item.asp?id=46926933}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 17--26
\crossref{https://doi.org/10.1134/S0081543821020036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110712753}
Linking options:
  • https://www.mathnet.ru/eng/tm4195
  • https://doi.org/10.4213/tm4195
  • https://www.mathnet.ru/eng/tm/v313/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :90
    References:25
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024