Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 313, Pages 33–46
DOI: https://doi.org/10.4213/tm4177
(Mi tm4177)
 

This article is cited in 1 scientific paper (total in 1 paper)

Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform

V. M. Busovikova, D. V. Zavadskya, V. Zh. Sakbaevb

a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (258 kB) Citations (1)
References:
Abstract: In the space of square integrable functions on a Hilbert space with a translation invariant measure, we study unitary groups of operators of shift by vectors of the momentum space. Analyzing the averaging of functionals of Gaussian random processes in the momentum space, we obtain a semigroup of self-adjoint contractions; we establish conditions for the strong continuity of this semigroup and study its generator, which is the operator of multiplication by a quadratic form of a nonpositive trace-class operator in the Hilbert space. We compare the properties of the groups of shift operators in the coordinate and momentum spaces, as well as the properties of semigroups of self-adjoint contractions generated by diffusion in the coordinate and momentum spaces. In addition, we show that one cannot define the Fourier transform as a unitary map that would provide a unitary equivalence of these contraction semigroups.
Keywords: translation invariant measure on a Hilbert space, Gaussian random process, strongly continuous semigroup, Fourier transform.
Funding agency Grant number
Russian Science Foundation 19-11-00320
This work is supported by the Russian Science Foundation under grant 19-11-00320.
Received: July 28, 2020
Revised: November 5, 2020
Accepted: April 4, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 313, Pages 27–40
DOI: https://doi.org/10.1134/S0081543821020048
Bibliographic databases:
Document Type: Article
UDC: 517.982+517.983
Language: Russian
Citation: V. M. Busovikov, D. V. Zavadsky, V. Zh. Sakbaev, “Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 33–46; Proc. Steklov Inst. Math., 313 (2021), 27–40
Citation in format AMSBIB
\Bibitem{BusZavSak21}
\by V.~M.~Busovikov, D.~V.~Zavadsky, V.~Zh.~Sakbaev
\paper Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 33--46
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4177}
\crossref{https://doi.org/10.4213/tm4177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4286406}
\elib{https://elibrary.ru/item.asp?id=46929781}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 27--40
\crossref{https://doi.org/10.1134/S0081543821020048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110998513}
Linking options:
  • https://www.mathnet.ru/eng/tm4177
  • https://doi.org/10.4213/tm4177
  • https://www.mathnet.ru/eng/tm/v313/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024