Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 313, Pages 280–284
DOI: https://doi.org/10.4213/tm4194
(Mi tm4194)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$

F. G. Uskov

Skolkovo Institute of Science and Technology, Bol'shoi bul. 30, stroenie 1, Moscow, 121205 Russia
Full-text PDF (151 kB) Citations (1)
References:
Abstract: Systems of quantum spins $1/2$ with isotropic Heisenberg interaction play an important role in physics. In studying such systems, it may be useful to have a complete, yet non-overcomplete, basis of operators each of which has the symmetry of the Hamiltonian, i.e., is invariant with respect to rotations (global $\mathrm {SU}(2)$ transformations of the Pauli matrices). This paper presents an algorithm for constructing such a basis. The algorithm is implemented in Wolfram Mathematica.
Keywords: Pauli matrices, isotropic Heisenberg interaction, quantum spin systems, operator basis.
Funding agency Grant number
Russian Foundation for Basic Research 18-32-20218
This work was supported by the Russian Foundation for Basic Research, project no. 18-32-20218.
Received: August 24, 2020
Revised: September 11, 2020
Accepted: October 29, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 313, Pages 263–267
DOI: https://doi.org/10.1134/S0081543821020243
Bibliographic databases:
Document Type: Article
UDC: 517.958:530.145:512
Language: Russian
Citation: F. G. Uskov, “On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 280–284; Proc. Steklov Inst. Math., 313 (2021), 263–267
Citation in format AMSBIB
\Bibitem{Usk21}
\by F.~G.~Uskov
\paper On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 280--284
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4194}
\crossref{https://doi.org/10.4213/tm4194}
\elib{https://elibrary.ru/item.asp?id=46918635}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 263--267
\crossref{https://doi.org/10.1134/S0081543821020243}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110942750}
Linking options:
  • https://www.mathnet.ru/eng/tm4194
  • https://doi.org/10.4213/tm4194
  • https://www.mathnet.ru/eng/tm/v313/p280
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :61
    References:19
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024