Abstract:
The eigenstate thermalization hypothesis (ETH) is discussed. We note that one common formulation of the ETH does not necessarily imply thermalization of an observable of an isolated many-body quantum system. We show that to get thermalization, one has to postulate the canonical or microcanonical distribution in the ETH ansatz. More generally, any other average can be postulated in the generalized ETH ansatz, which leads to a corresponding equilibration condition.
Citation:
I. V. Volovich, O. V. Inozemcev, “On the Thermalization Hypothesis of Quantum States”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 285–295; Proc. Steklov Inst. Math., 313 (2021), 268–278
\Bibitem{VolIno21}
\by I.~V.~Volovich, O.~V.~Inozemcev
\paper On the Thermalization Hypothesis of Quantum States
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 285--295
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4169}
\crossref{https://doi.org/10.4213/tm4169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4286427}
\elib{https://elibrary.ru/item.asp?id=46940905}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 268--278
\crossref{https://doi.org/10.1134/S0081543821020255}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110697014}
Linking options:
https://www.mathnet.ru/eng/tm4169
https://doi.org/10.4213/tm4169
https://www.mathnet.ru/eng/tm/v313/p285
This publication is cited in the following 1 articles:
A. S. Trushechkin, G. M. Timofeev, “Hamiltonian of mean force in the weak-coupling and high-temperature approximations and refined quantum master equations”, Int. J. Mod. Phys. A, 37:20 (2022), 2243021–24