Abstract:
It is well known that nonorthogonal quantum states cannot be reliably distinguished; however, for a number of sets of quantum states, the operation of unambiguous discrimination is possible, which either provides full information or yields an inconclusive result. In this paper, a generalization of such a transformation is constructed that has an increased success probability and makes the states more distinguishable. It is shown that after this transformation the states can be reliably distinguished without loss of the total success probability.
Citation:
D. A. Kronberg, “Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 124–130; Proc. Steklov Inst. Math., 313 (2021), 113–119
\Bibitem{Kro21}
\by D.~A.~Kronberg
\paper Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 124--130
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4178}
\crossref{https://doi.org/10.4213/tm4178}
\elib{https://elibrary.ru/item.asp?id=46901933}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 113--119
\crossref{https://doi.org/10.1134/S0081543821020115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110786357}
Linking options:
https://www.mathnet.ru/eng/tm4178
https://doi.org/10.4213/tm4178
https://www.mathnet.ru/eng/tm/v313/p124
This publication is cited in the following 10 articles:
G. G. Amosov, A. D. Baranov, D. A. Kronberg, “On positive operator-valued measures generated by a family of one-dimensional projectors”, Ann. Funct. Anal., 15:3 (2024)
D. A. Kronberg, “On the Structure of Postselective Transformations of Quantum States”, Proc. Steklov Inst. Math., 324 (2024), 123–134
T. R. Klevtsov, D. A. Kronberg, “On Eavesdropping Strategy for Geometrically Uniform Coherent States Quantum Cryptography Protocol”, Lobachevskii J Math, 45:6 (2024), 2527
D. A. Kronberg, A. S. Avanesov, “On postselective modifications of quantum observables”, Lobachevskii J. Math., 44:6 (2023), 1980–1989
D. A. Kronberg, T. Klevtsov, “Assisted postselective quantum transformations and an improved photon number splitting attack strategy”, Mathematics, 11:24 (2023), 4973–11
N. R. Kenbaev, D. A. Kronberg, “Quantum postselective measurements: sufficient condition for overcoming the Holevo bound and the role of max-relative entropy”, Phys. Rev. A, 105:1 (2022), 012609
D. A. Kronberg, “Modification of quantum measurements by mapping onto quantum states and classical outcomes”, Lobachevskii J. Math., 43:7 (2022), 1663–1668
D. A. Kronberg, D. V. Sych, D. V. Babukhin, “Explicit attacks on the Bennett-Brassard 1984 protocol with partially distinguishable photons”, Phys. Rev. A, 106 (2022), 42403–9
D. A. Kronberg, “Success probability for postselective transformations of pure quantum states”, Phys. Rev. A, 106:4 (2022), 42447–6