Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 313, Pages 109–123
DOI: https://doi.org/10.4213/tm4167
(Mi tm4167)
 

This article is cited in 2 scientific papers (total in 2 papers)

Some Algebraic and Geometric Aspects of Quantum Measurements

A. S. Kocherovaa, I. Yu. Zhdanovskiyab

a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
b Laboratory of Algebraic Geometry and Its Applications, HSE University, ul. Usacheva 6, Moscow, 119048 Russia
Full-text PDF (268 kB) Citations (2)
References:
Abstract: We study positive operator-valued measures by algebraic and geometric methods. We prove that positive operator-valued measures are parametrized by a Poisson manifold. Also, we show how to obtain symplectic leaves of this Poisson manifold in terms of parameters of the measures. In addition, we study the interaction of two projection-valued measures by the methods of algebraic geometry.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00908
HSE Basic Research Program
Ministry of Education and Science of the Russian Federation 5-100
The second author was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00908. The work was also supported by the HSE Basic Research Program and the Russian Academic Excellence Project “5-100.”
Received: July 20, 2020
Revised: October 4, 2020
Accepted: November 16, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 313, Pages 99–112
DOI: https://doi.org/10.1134/S0081543821020103
Bibliographic databases:
Document Type: Article
UDC: 512.669.82+530.145.82
Language: Russian
Citation: A. S. Kocherova, I. Yu. Zhdanovskiy, “Some Algebraic and Geometric Aspects of Quantum Measurements”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 109–123; Proc. Steklov Inst. Math., 313 (2021), 99–112
Citation in format AMSBIB
\Bibitem{KocZhd21}
\by A.~S.~Kocherova, I.~Yu.~Zhdanovskiy
\paper Some Algebraic and Geometric Aspects of Quantum Measurements
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 109--123
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4167}
\crossref{https://doi.org/10.4213/tm4167}
\elib{https://elibrary.ru/item.asp?id=46898779}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 99--112
\crossref{https://doi.org/10.1134/S0081543821020103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110583327}
Linking options:
  • https://www.mathnet.ru/eng/tm4167
  • https://doi.org/10.4213/tm4167
  • https://www.mathnet.ru/eng/tm/v313/p109
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024