Abstract:
We suggest an elementary harmonic analysis approach to canceling and weakly canceling differential operators, which allows us to extend these notions to the anisotropic setting and replace differential operators with Fourier multiplies with mild smoothness regularity. In this more general setting of anisotropic Fourier multipliers, we prove the inequality ‖f‖L∞≲‖Af‖L1 if A is a weakly canceling operator of order d and the inequality ‖f‖L2≲‖Af‖L1 if A is a canceling operator of order d/2, provided f is a function of d variables.
Citation:
D. M. Stolyarov, “Weakly Canceling Operators and Singular Integrals”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 259–271; Proc. Steklov Inst. Math., 312 (2021), 249–260
\Bibitem{Sto21}
\by D.~M.~Stolyarov
\paper Weakly Canceling Operators and Singular Integrals
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 259--271
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4156}
\crossref{https://doi.org/10.4213/tm4156}
\elib{https://elibrary.ru/item.asp?id=46066119}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 249--260
\crossref{https://doi.org/10.1134/S0081543821010168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105925479}
Linking options:
https://www.mathnet.ru/eng/tm4156
https://doi.org/10.4213/tm4156
https://www.mathnet.ru/eng/tm/v312/p259
This publication is cited in the following 3 articles:
Franz Gmeineder, Bogdan Raiţă, Jean Van Schaftingen, “Boundary ellipticity and limiting L1-estimates on halfspaces”, Advances in Mathematics, 439 (2024), 109490
D. Stolyarov, “On Maz'ya's $\varphi$-inequalities for martingale fractional integration and their Bellman functions”, Michigan Math. J., 1:1 (2023), 1–18
D. M. Stolyarov, “Hardy-Littlewood-Sobolev inequality for $p=1$”, Sb. Math., 213:6 (2022), 844–889