Abstract:
We address the problem of approximating the derivatives of a differentiable function of m variables (m=3,4) by the derivatives of a polynomial on an m-simplex for the standard method of interpolation by Lagrange polynomials at the points of a uniform grid on this simplex. For the error of approximation of these derivatives by the derivatives of the interpolation polynomial, we obtain upper bounds expressed in terms of new geometric characteristics of the simplex. The proposed characteristics of the simplex are clear and easy to calculate.
Keywords:
multidimensional interpolation, finite element method.
Citation:
Yu. N. Subbotin, N. V. Baidakova, “Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 272–281; Proc. Steklov Inst. Math., 312 (2021), 261–269
\Bibitem{SubBai21}
\by Yu.~N.~Subbotin, N.~V.~Baidakova
\paper Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 272--281
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4154}
\crossref{https://doi.org/10.4213/tm4154}
\elib{https://elibrary.ru/item.asp?id=46016707}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 261--269
\crossref{https://doi.org/10.1134/S008154382101017X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104639341}
Linking options:
https://www.mathnet.ru/eng/tm4154
https://doi.org/10.4213/tm4154
https://www.mathnet.ru/eng/tm/v312/p272
This publication is cited in the following 1 articles:
N. V. Baidakova, Yu. N. Subbotin, “Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation”, Math. Notes, 115:1 (2024), 3–11