Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 312, Pages 272–281
DOI: https://doi.org/10.4213/tm4154
(Mi tm4154)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices

Yu. N. Subbotina, N. V. Baidakovaab

a N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
b Ural Federal University named after the First President of Russia B. N. Yeltsin, ul. Mira 19, Yekaterinburg, 620002 Russia
Full-text PDF (225 kB) Citations (1)
References:
Abstract: We address the problem of approximating the derivatives of a differentiable function of $m$ variables ($m=3,4$) by the derivatives of a polynomial on an $m$-simplex for the standard method of interpolation by Lagrange polynomials at the points of a uniform grid on this simplex. For the error of approximation of these derivatives by the derivatives of the interpolation polynomial, we obtain upper bounds expressed in terms of new geometric characteristics of the simplex. The proposed characteristics of the simplex are clear and easy to calculate.
Keywords: multidimensional interpolation, finite element method.
Received: July 1, 2020
Revised: August 31, 2020
Accepted: October 4, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 312, Pages 261–269
DOI: https://doi.org/10.1134/S008154382101017X
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: Yu. N. Subbotin, N. V. Baidakova, “Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 272–281; Proc. Steklov Inst. Math., 312 (2021), 261–269
Citation in format AMSBIB
\Bibitem{SubBai21}
\by Yu.~N.~Subbotin, N.~V.~Baidakova
\paper Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 272--281
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4154}
\crossref{https://doi.org/10.4213/tm4154}
\elib{https://elibrary.ru/item.asp?id=46016707}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 261--269
\crossref{https://doi.org/10.1134/S008154382101017X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104639341}
Linking options:
  • https://www.mathnet.ru/eng/tm4154
  • https://doi.org/10.4213/tm4154
  • https://www.mathnet.ru/eng/tm/v312/p272
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024