Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 312, Pages 43–81
DOI: https://doi.org/10.4213/tm4141
(Mi tm4141)
 

This article is cited in 1 scientific paper (total in 1 paper)

Optimal Calderón Spaces for Generalized Bessel Potentials

Elza G. Bakhtigareevaa, Mikhail L. Goldmana, Dorothee D. Haroskeb

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07737 Jena, Germany
Full-text PDF (371 kB) Citations (1)
References:
Abstract: We investigate the properties of spaces with generalized smoothness, such as Calderón spaces, that include the classical Nikolskii–Besov spaces and many of their generalizations, and describe differential properties of generalized Bessel potentials that include classical Bessel potentials and Sobolev spaces. The kernels of potentials may have non-power singularities at the origin. Using order-sharp estimates for the moduli of continuity of potentials, we establish criteria for the embeddings of potentials into Calderón spaces and describe the optimal spaces for such embeddings.
Funding agency Grant number
Russian Science Foundation 19-11-00087
The work of E. G. Bakhtigareeva and M. L. Goldman is supported by the Russian Science Foundation under grant 19-11-00087 and performed in Steklov Mathematical Institute of Russian Academy of Sciences.
Received: July 12, 2020
Revised: October 13, 2020
Accepted: November 11, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 312, Pages 37–75
DOI: https://doi.org/10.1134/S008154382101003X
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: Elza G. Bakhtigareeva, Mikhail L. Goldman, Dorothee D. Haroske, “Optimal Calderón Spaces for Generalized Bessel Potentials”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 43–81; Proc. Steklov Inst. Math., 312 (2021), 37–75
Citation in format AMSBIB
\Bibitem{BakGolHar21}
\by Elza~G.~Bakhtigareeva, Mikhail~L.~Goldman, Dorothee~D.~Haroske
\paper Optimal Calder\'on Spaces for Generalized Bessel Potentials
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 43--81
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4141}
\crossref{https://doi.org/10.4213/tm4141}
\elib{https://elibrary.ru/item.asp?id=46054692}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 37--75
\crossref{https://doi.org/10.1134/S008154382101003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104578634}
Linking options:
  • https://www.mathnet.ru/eng/tm4141
  • https://doi.org/10.4213/tm4141
  • https://www.mathnet.ru/eng/tm/v312/p43
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025