Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 310, Pages 230–236
DOI: https://doi.org/10.4213/tm4140
(Mi tm4140)
 

This article is cited in 3 scientific papers (total in 3 papers)

Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach

A. I. Neishtadtab, A. V. Artemyevac

a Space Research Institute of the Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997 Russia
b Department of Mathematical Sciences, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
c Institute of Geophysics and Planetary Physics, University of California Los Angeles, 603 Charles E. Young Drive, Los Angeles, CA, 90095-1567, USA
Full-text PDF (158 kB) Citations (3)
References:
Abstract: The guiding center approximation represents a very powerful tool for analyzing and modeling a charged particle motion in strong magnetic fields. This approximation is based on the conservation of an adiabatic invariant, the magnetic moment. Hamiltonian equations for the guiding center motion are traditionally introduced using a non-canonical symplectic structure. Under such an approach one has to apply the non-canonical Hamiltonian perturbation theory in order to calculate the magnetic moment corrections. In this study we present an alternative approach with canonical Hamiltonian equations for the guiding center motion in time-dependent electromagnetic fields. We show that the derived Hamiltonian decouples three types of motion (gyrorotation, field-aligned motion, and cross-field drifts), and each type is described by a pair of conjugate variables. This form of Hamiltonian and symplectic structure allows easy introduction of adiabatic invariants and can be useful for the analysis of various plasma systems.
Received: November 29, 2019
Revised: November 29, 2019
Accepted: May 29, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 310, Pages 214–219
DOI: https://doi.org/10.1134/S008154382005017X
Bibliographic databases:
Document Type: Article
UDC: 517.928.7+517.958:537.84
Language: Russian
Citation: A. I. Neishtadt, A. V. Artemyev, “Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach”, Selected issues of mathematics and mechanics, Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov, Trudy Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020, 230–236; Proc. Steklov Inst. Math., 310 (2020), 214–219
Citation in format AMSBIB
\Bibitem{NeiArt20}
\by A.~I.~Neishtadt, A.~V.~Artemyev
\paper Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 310
\pages 230--236
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4140}
\crossref{https://doi.org/10.4213/tm4140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4173203}
\elib{https://elibrary.ru/item.asp?id=45106410}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 310
\pages 214--219
\crossref{https://doi.org/10.1134/S008154382005017X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000595790500017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097055529}
Linking options:
  • https://www.mathnet.ru/eng/tm4140
  • https://doi.org/10.4213/tm4140
  • https://www.mathnet.ru/eng/tm/v310/p230
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :109
    References:65
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024