Abstract:
We study one-point commuting difference operators of rank $2$ and establish a relationship between these operators and commuting differential operators of rank $2$ in the case of elliptic spectral curves.
Citation:
Gulnara S. Mauleshova, Andrey E. Mironov, “Discretization of Commuting Ordinary Differential Operators of Rank 2 in the Case of Elliptic Spectral Curves”, Selected issues of mathematics and mechanics, Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov, Trudy Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020, 217–229; Proc. Steklov Inst. Math., 310 (2020), 202–213
\Bibitem{MauMir20}
\by Gulnara~S.~Mauleshova, Andrey~E.~Mironov
\paper Discretization of Commuting Ordinary Differential Operators of Rank 2 in the Case of Elliptic Spectral Curves
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 310
\pages 217--229
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4114}
\crossref{https://doi.org/10.4213/tm4114}
\elib{https://elibrary.ru/item.asp?id=45115305}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 310
\pages 202--213
\crossref{https://doi.org/10.1134/S0081543820050168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000595790500016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097039127}
Linking options:
https://www.mathnet.ru/eng/tm4114
https://doi.org/10.4213/tm4114
https://www.mathnet.ru/eng/tm/v310/p217
This publication is cited in the following 2 articles:
Alexander B. Zheglov, “The Schur–Sato Theory for Quasi-elliptic Rings”, Proc. Steklov Inst. Math., 320 (2023), 115–160
G. S. Mauleshova, A. E. Mironov, “One-dimensional finite-gap Schrödinger operators as a limit of commuting difference operators”, Dokl. Math., 108:1 (2023), 312–315