Abstract:
Given a trigonometric polynomial Tn(t)=∑nk=1τk(t), τk(t):=akcoskt+bksinkt, we consider the problem of extracting the sum of harmonics ∑τμs(t) of prescribed orders μs by the method of amplitude and phase transformations. Such transformations map the polynomials Tn(t) into similar ones using two simple operations: the multiplication by a real constant X and the shift by a real phase λ, i.e., Tn(t)↦XTn(t−λ). We represent the sum of harmonics as a sum of such polynomials and then use this representation to obtain sharp Fejér-type estimates.
The work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment 1.574.2016/1.4) and by the Russian Foundation for Basic Research (project no. 18-01-00744).
Citation:
D. G. Vasilchenkova, V. I. Danchenko, “Extraction of Several Harmonics from Trigonometric Polynomials. Fejér-Type Inequalities”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 308, Steklov Math. Inst. RAS, Moscow, 2020, 101–115; Proc. Steklov Inst. Math., 308 (2020), 92–106
\Bibitem{VasDan20}
\by D.~G.~Vasilchenkova, V.~I.~Danchenko
\paper Extraction of Several Harmonics from Trigonometric Polynomials. Fej\'er-Type Inequalities
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 308
\pages 101--115
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4078}
\crossref{https://doi.org/10.4213/tm4078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4101845}
\elib{https://elibrary.ru/item.asp?id=43272930}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 308
\pages 92--106
\crossref{https://doi.org/10.1134/S0081543820010083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000535370800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085328527}
Linking options:
https://www.mathnet.ru/eng/tm4078
https://doi.org/10.4213/tm4078
https://www.mathnet.ru/eng/tm/v308/p101
This publication is cited in the following 4 articles:
V. I. Danchenko, D. G. Chkalova, “Bernstein-type estimates for the derivatives of trigonometric polynomials”, Probl. anal. Issues Anal., 10(28):3 (2021), 31–40
D G Chkalova, “Time series forecasting using amplitude-frequency analysis of STL components”, J. Phys.: Conf. Ser., 2094:3 (2021), 032019
V. I. Danchenko, D. G. Chkalova, “Algebraic Analogs of Fejer Inequalities”, J Math Sci, 255:5 (2021), 601
D G Chkalova, “Fast optical signal filtering by means of amplitude and phase operators”, J. Phys.: Conf. Ser., 1679:2 (2020), 022092