Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 308, Pages 88–100
DOI: https://doi.org/10.4213/tm4050
(Mi tm4050)
 

This article is cited in 6 scientific papers (total in 6 papers)

Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension

A. S. Bortakovskii

Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia
Full-text PDF (231 kB) Citations (6)
References:
Abstract: We consider an optimal control problem for a hybrid system whose continuous motion alternates with discrete variations (switchings) under which the dimension of the state space changes. The moments and the number of switchings are not specified in advance. They are determined as a result of minimizing a functional that incorporates the cost of each switching. The state space may change, for example, when the number of control objects varies, which is typical, in particular, of control problems for groups of a variable number of aircraft. We obtain sufficient optimality conditions for such systems and derive equations for the synthesis of optimal trajectories. The application of optimality conditions is demonstrated in academic examples.
Funding agency Grant number
Russian Foundation for Basic Research 18-08-00128
This work was supported by the Russian Foundation for Basic Research, project no. 18-08-00128.
Received: March 26, 2019
Revised: September 15, 2019
Accepted: October 21, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 308, Pages 79–91
DOI: https://doi.org/10.1134/S0081543820010071
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. S. Bortakovskii, “Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 308, Steklov Math. Inst. RAS, Moscow, 2020, 88–100; Proc. Steklov Inst. Math., 308 (2020), 79–91
Citation in format AMSBIB
\Bibitem{Bor20}
\by A.~S.~Bortakovskii
\paper Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 308
\pages 88--100
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4050}
\crossref{https://doi.org/10.4213/tm4050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4101844}
\elib{https://elibrary.ru/item.asp?id=43272893}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 308
\pages 79--91
\crossref{https://doi.org/10.1134/S0081543820010071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000535370800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085318357}
Linking options:
  • https://www.mathnet.ru/eng/tm4050
  • https://doi.org/10.4213/tm4050
  • https://www.mathnet.ru/eng/tm/v308/p88
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :69
    References:49
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024