Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 307, Pages 267–290
DOI: https://doi.org/10.4213/tm4042
(Mi tm4042)
 

The Tate–Oort Group Scheme $\mathbb {TO}_p$

Miles Reid

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
References:
Abstract: Over an algebraically closed field of characteristic $p$, there are three group schemes of order $p$, namely the ordinary cyclic group $\mathbb Z/p$, the multiplicative group $\boldsymbol \mu _p\subset \mathbb G_\mathrm{m}$ and the additive group $\boldsymbol \alpha _p\subset \mathbb G_\mathrm{a}$. The Tate–Oort group scheme $\mathbb {TO}_p$ puts these into one happy family, together with the cyclic group of order $p$ in characteristic zero. This paper studies a simplified form of $\mathbb {TO}_p$, focusing on its representation theory and basic applications in geometry. A final section describes more substantial applications to varieties having $p$-torsion in $\mathrm {Pic}^\tau $, notably the $5$-torsion Godeaux surfaces and Calabi–Yau threefolds obtained from $\mathbb {TO}_5$-invariant quintics.
Funding agency Grant number
National Science Foundation 1440140
The bulk of this paper was written during a spring 2019 residence at MSRI, Berkeley, California, supported by NSF grant no. 1440140.
Received: May 25, 2019
Revised: June 27, 2019
Accepted: November 25, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 307, Pages 245–266
DOI: https://doi.org/10.1134/S0081543819060154
Bibliographic databases:
Document Type: Article
UDC: 512.74
Language: Russian
Citation: Miles Reid, “The Tate–Oort Group Scheme $\mathbb {TO}_p$”, Algebra, number theory, and algebraic geometry, Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 307, Steklov Mathematical Institute of RAS, Moscow, 2019, 267–290; Proc. Steklov Inst. Math., 307 (2019), 245–266
Citation in format AMSBIB
\Bibitem{Rei19}
\by Miles~Reid
\paper The Tate--Oort Group Scheme $\mathbb {TO}_p$
\inbook Algebra, number theory, and algebraic geometry
\bookinfo Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 307
\pages 267--290
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4042}
\crossref{https://doi.org/10.4213/tm4042}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 307
\pages 245--266
\crossref{https://doi.org/10.1134/S0081543819060154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520962900015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085067912}
Linking options:
  • https://www.mathnet.ru/eng/tm4042
  • https://doi.org/10.4213/tm4042
  • https://www.mathnet.ru/eng/tm/v307/p267
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :46
    References:21
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024