Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 307, Pages 291–305
DOI: https://doi.org/10.4213/tm4030
(Mi tm4030)
 

Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties

Nikolai A. Tyurinab

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: In recent papers we constructed examples of nonstandard Lagrangian tori in compact simply connected toric symplectic manifolds. Using a new “pseudotoric” technique, we explained the appearance of nonstandard Lagrangian tori of Chekanov type and proposed a topological obstruction which separates them from the standard ones. In the present paper we construct nonstandard tori satisfying the Bohr–Sommerfeld condition with respect to the anticanonical class. Then we prove that if there exists a standard monotonic Lagrangian torus in a smooth simply connected toric Fano variety equipped with a canonical symplectic form, then there must exist a monotonic Lagrangian torus of Chekanov type.
Funding agency Grant number
Russian Science Foundation 19-11-00164
This work is supported by the Russian Science Foundation under grant 19-11-00164.
Received: May 23, 2019
Revised: July 4, 2019
Accepted: September 3, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 307, Pages 267–280
DOI: https://doi.org/10.1134/S0081543819060166
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: Nikolai A. Tyurin, “Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties”, Algebra, number theory, and algebraic geometry, Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 307, Steklov Mathematical Institute of RAS, Moscow, 2019, 291–305; Proc. Steklov Inst. Math., 307 (2019), 267–280
Citation in format AMSBIB
\Bibitem{Tyu19}
\by Nikolai~A.~Tyurin
\paper Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties
\inbook Algebra, number theory, and algebraic geometry
\bookinfo Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 307
\pages 291--305
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4030}
\crossref{https://doi.org/10.4213/tm4030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070071}
\elib{https://elibrary.ru/item.asp?id=43255158}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 307
\pages 267--280
\crossref{https://doi.org/10.1134/S0081543819060166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520962900016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082073077}
Linking options:
  • https://www.mathnet.ru/eng/tm4030
  • https://doi.org/10.4213/tm4030
  • https://www.mathnet.ru/eng/tm/v307/p291
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024