|
This article is cited in 4 scientific papers (total in 4 papers)
On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory
I. A. Panina, C. Walterb a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, nab. Fontanki 27, St. Petersburg, 191023 Russia
b Laboratoire J.-A. Dieudonné (UMR 7351 du CNRS), Département de mathématiques, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
Abstract:
We reconstruct hermitian $K$-theory via algebraic symplectic cobordism. In the motivic stable homotopy category $\mathrm {SH}(S)$, there is a unique morphism $\varphi \colon \mathbf {MSp}\to \mathbf {BO}$ of commutative ring $T$-spectra which sends the Thom class $\mathrm {th}^{\mathbf {MSp}}$ to the Thom class $\mathrm {th}^{\mathbf {BO}}$. Using $\varphi $ we construct an isomorphism of bigraded ring cohomology theories on the category $\mathcal Sm\mathcal Op/S$, $\overline \varphi \colon \mathbf {MSp}^{*,*}(X,U)\otimes _{\mathbf {MSp}^{4*,2*}(\mathrm {pt})} \mathbf {BO}^{4*,2*}(\mathrm {pt}) \cong \mathbf {BO}^{*,*}(X,U)$. The result is an algebraic version of the theorem of Conner and Floyd reconstructing real $K$-theory using symplectic cobordism. Rewriting the bigrading as $\mathbf {MSp}^{p,q}=\mathbf {MSp}^{[q]}_{2\smash {q-p}}$, we have an isomorphism $\overline \varphi \colon \mathbf {MSp}^{[*]}_*(X,U)\otimes _{\mathbf {MSp}^{[2*]}_0(\mathrm {pt})} \mathrm {KO}^{[2*]}_0(\mathrm {pt}) \cong \mathrm {KO}^{[*]}_*(X,U)$, where the $\mathrm {KO}^{[n]}_i(X,U)$ are Schlichting's hermitian $K$-theory groups.
Received: April 8, 2019 Revised: May 18, 2019 Accepted: July 16, 2019
Citation:
I. A. Panin, C. Walter, “On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory”, Algebra, number theory, and algebraic geometry, Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 307, Steklov Mathematical Institute of RAS, Moscow, 2019, 180–192; Proc. Steklov Inst. Math., 307 (2019), 162–173
Linking options:
https://www.mathnet.ru/eng/tm4028https://doi.org/10.4213/tm4028 https://www.mathnet.ru/eng/tm/v307/p180
|
|