Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 307, Pages 180–192
DOI: https://doi.org/10.4213/tm4028
(Mi tm4028)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory

I. A. Panina, C. Walterb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, nab. Fontanki 27, St. Petersburg, 191023 Russia
b Laboratoire J.-A. Dieudonné (UMR 7351 du CNRS), Département de mathématiques, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
Full-text PDF (272 kB) Citations (4)
References:
Abstract: We reconstruct hermitian $K$-theory via algebraic symplectic cobordism. In the motivic stable homotopy category $\mathrm {SH}(S)$, there is a unique morphism $\varphi \colon \mathbf {MSp}\to \mathbf {BO}$ of commutative ring $T$-spectra which sends the Thom class $\mathrm {th}^{\mathbf {MSp}}$ to the Thom class $\mathrm {th}^{\mathbf {BO}}$. Using $\varphi $ we construct an isomorphism of bigraded ring cohomology theories on the category $\mathcal Sm\mathcal Op/S$, $\overline \varphi \colon \mathbf {MSp}^{*,*}(X,U)\otimes _{\mathbf {MSp}^{4*,2*}(\mathrm {pt})} \mathbf {BO}^{4*,2*}(\mathrm {pt}) \cong \mathbf {BO}^{*,*}(X,U)$. The result is an algebraic version of the theorem of Conner and Floyd reconstructing real $K$-theory using symplectic cobordism. Rewriting the bigrading as $\mathbf {MSp}^{p,q}=\mathbf {MSp}^{[q]}_{2\smash {q-p}}$, we have an isomorphism $\overline \varphi \colon \mathbf {MSp}^{[*]}_*(X,U)\otimes _{\mathbf {MSp}^{[2*]}_0(\mathrm {pt})} \mathrm {KO}^{[2*]}_0(\mathrm {pt}) \cong \mathrm {KO}^{[*]}_*(X,U)$, where the $\mathrm {KO}^{[n]}_i(X,U)$ are Schlichting's hermitian $K$-theory groups.
Funding agency Grant number
Centre National de la Recherche Scientifique 7351
Research Council of Norway 250399
Russian Foundation for Basic Research 19-01-00513
The first author was supported by Laboratoire J.-A. Dieudonné, UMR 7351 du CNRS, Universite de Nice – Sophia-Antipolis, by the Research Council of Norway (Frontier research group project no. 250399 “Motivic Hopf equations” at the University of Oslo), and by the Russian Foundation for Basic Research (project no. 19-01-00513).
Received: April 8, 2019
Revised: May 18, 2019
Accepted: July 16, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 307, Pages 162–173
DOI: https://doi.org/10.1134/S0081543819060099
Bibliographic databases:
Document Type: Article
UDC: 512.666+512.732.2
Language: Russian
Citation: I. A. Panin, C. Walter, “On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory”, Algebra, number theory, and algebraic geometry, Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 307, Steklov Mathematical Institute of RAS, Moscow, 2019, 180–192; Proc. Steklov Inst. Math., 307 (2019), 162–173
Citation in format AMSBIB
\Bibitem{PanWal19}
\by I.~A.~Panin, C.~Walter
\paper On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory
\inbook Algebra, number theory, and algebraic geometry
\bookinfo Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 307
\pages 180--192
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4028}
\crossref{https://doi.org/10.4213/tm4028}
\elib{https://elibrary.ru/item.asp?id=43271260}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 307
\pages 162--173
\crossref{https://doi.org/10.1134/S0081543819060099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520962900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083215196}
Linking options:
  • https://www.mathnet.ru/eng/tm4028
  • https://doi.org/10.4213/tm4028
  • https://www.mathnet.ru/eng/tm/v307/p180
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :32
    References:28
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024