Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 307, Pages 148–179
DOI: https://doi.org/10.4213/tm4040
(Mi tm4040)
 

This article is cited in 1 scientific paper (total in 1 paper)

Classification of Degenerations and Picard Lattices of Kählerian K3 Surfaces with Symplectic Automorphism Group $C_4$

Viacheslav V. Nikulinab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
Full-text PDF (328 kB) Citations (1)
References:
Abstract: In the author's papers of 2013–2018, the degenerations and Picard lattices of Kählerian K3 surfaces with finite symplectic automorphism groups of high order were classified. For the remaining groups of small order—$D_6$, $C_4$, $(C_2)^2$, $C_3$, $C_2$, and $C_1$—the classification was not completed because each of these cases requires very long and difficult considerations and calculations. The case of $D_6$ was recently completely studied in the author's paper of 2019. In the present paper an analogous complete classification is presented for the cyclic group $C_4$ of order $4$.
Received: February 22, 2019
Revised: February 24, 2019
Accepted: June 29, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 307, Pages 130–161
DOI: https://doi.org/10.1134/S0081543819060087
Bibliographic databases:
Document Type: Article
UDC: 512.774+515.173.4+512.722+512.647.2
Language: Russian
Citation: Viacheslav V. Nikulin, “Classification of Degenerations and Picard Lattices of Kählerian K3 Surfaces with Symplectic Automorphism Group $C_4$”, Algebra, number theory, and algebraic geometry, Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 307, Steklov Mathematical Institute of RAS, Moscow, 2019, 148–179; Proc. Steklov Inst. Math., 307 (2019), 130–161
Citation in format AMSBIB
\Bibitem{Nik19}
\by Viacheslav~V.~Nikulin
\paper Classification of Degenerations and Picard Lattices of K\"ahlerian K3 Surfaces with Symplectic Automorphism Group $C_4$
\inbook Algebra, number theory, and algebraic geometry
\bookinfo Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 307
\pages 148--179
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4040}
\crossref{https://doi.org/10.4213/tm4040}
\elib{https://elibrary.ru/item.asp?id=43271139}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 307
\pages 130--161
\crossref{https://doi.org/10.1134/S0081543819060087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520962900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083173256}
Linking options:
  • https://www.mathnet.ru/eng/tm4040
  • https://doi.org/10.4213/tm4040
  • https://www.mathnet.ru/eng/tm/v307/p148
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :19
    References:20
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024