Abstract:
The pseudomode approach is discussed, with emphasis on the Gorini–Kossakowski–Sudarshan–Lindblad form of this approach. The connection of the pseudomode approach with solutions of the Friedrichs model and the Jaynes–Cummings model with dissipation at zero temperature is shown. The obtained results are applied to the description of non-Markovian phenomena in the Fenna–Matthews–Olson complexes. Estimations based on experimental data are presented. A generalization of the pseudomode approach to the finite-temperature case with the use of the deformation technique is discussed.
Citation:
A. E. Teretenkov, “Pseudomode Approach and Vibronic Non-Markovian Phenomena in Light-Harvesting Complexes”, Mathematical physics and applications, Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 306, Steklov Math. Inst. RAS, Moscow, 2019, 258–272; Proc. Steklov Inst. Math., 306 (2019), 242–256
\Bibitem{Ter19}
\by A.~E.~Teretenkov
\paper Pseudomode Approach and Vibronic Non-Markovian Phenomena in Light-Harvesting Complexes
\inbook Mathematical physics and applications
\bookinfo Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 306
\pages 258--272
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4021}
\crossref{https://doi.org/10.4213/tm4021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4040779}
\elib{https://elibrary.ru/item.asp?id=43206337}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 306
\pages 242--256
\crossref{https://doi.org/10.1134/S0081543819050201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511670100020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073594746}
Linking options:
https://www.mathnet.ru/eng/tm4021
https://doi.org/10.4213/tm4021
https://www.mathnet.ru/eng/tm/v306/p258
This publication is cited in the following 16 articles:
A. S. Trushechkin, “Kinetic State and Emergence of Markovian Dynamics in Exactly Solvable Models of Open Quantum Systems”, Proc. Steklov Inst. Math., 324 (2024), 187–212
Federico Gallina, Matteo Bruschi, Roberto Cacciari, Barbara Fresch, “Simulating Non-Markovian Dynamics in Multidimensional Electronic Spectroscopy via Quantum Algorithm”, J. Chem. Theory Comput., 2024
A. E. Teretenkov, “Quantum Markovian dynamics after the bath correlation time”, Comput. Math. Math. Phys., 63:1 (2023), 135–145
A. E. Teretenkov, “Memory tensor for non-Markovian dynamics with random Hamiltonian”, Mathematics, 11:18 (2023), 3854–19
A. Yu. Karasëv, A. E. Teretenkov, “Time-convolutionless master equations for composite open quantum systems”, Lobachevskii J. Math., 44:6 (2023), 2051–2064
C. L. Latune, “Steady state in strong system-bath coupling regime: reaction coordinate versus perturbative expansion”, Phys. Rev. E, 105:2 (2022), 024126
A. S. Trushechkin, M. Merkli, J. D. Cresser, J. Anders, “Open quantum system dynamics and the mean force Gibbs state”, AVS Quantum Sci., 4 (2022), 12301–23
A. E. Teretenkov, “An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations”, Proc. Steklov Inst. Math., 313 (2021), 236–245
A. S. Trushechkin, “Derivation of the Redfield Quantum Master Equation and Corrections to It by the Bogoliubov Method”, Proc. Steklov Inst. Math., 313 (2021), 246–257
A. E. Teretenkov, “Long-Time Markovianity of Multi-Level Systems in the Rotating Wave Approximation”, Lobachevskii J. Math., 42:10, SI (2021), 2455–2465
A. E. Teretenkov, “Non-perturbative effects in corrections to quantum master equations arising in Bogolubov-van Hove limit”, J. Phys. A-Math. Theor., 54:26 (2021), 265302
Yu. A. Nosal, A. E. Teretenkov, “Exact Dynamics of Moments and Correlation Functions for GKSL Fermionic Equations of Poisson Type”, Math. Notes, 108:6 (2020), 911–915
A. E. Teretenkov, “Exact non-Markovian evolution with several reservoirs”, Phys. Part. Nuclei, 51:4 (2020), 479–484
A. E. Teretenkov, “Integral Representation of Finite Temperature Non-Markovian Evolution of Some Systems in Rotating Wave Approximation”, Lobachevskii J. Math., 41:12, SI (2020), 2397–2404
Teretenkov A.E., “Non-Markovian Evolution of Multi-Level System Interacting With Several Reservoirs. Exact and Approximate”, Lobachevskii J. Math., 40:10, SI (2019), 1587–1605
Trushechkin A.S., “Higher-Order Corrections to the Redfield Equation With Respect to the System-Bath Coupling Based on the Hierarchical Equations of Motion”, Lobachevskii J. Math., 40:10, SI (2019), 1606–1618