Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 306, Pages 235–257
DOI: https://doi.org/10.4213/tm4005
(Mi tm4005)
 

This article is cited in 3 scientific papers (total in 3 papers)

Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product

M. A. Soloviev

Lebedev Physical Institute of the Russian Academy of Sciences, Leninskii pr. 53, Moscow, 119991 Russia
Full-text PDF (344 kB) Citations (3)
References:
Abstract: The properties of the generalized Gelfand–Shilov spaces $S_{b_n}^{a_k}$ are studied from the viewpoint of deformation quantization. We specify the conditions on the defining sequences $(a_k)$ and $(b_n)$ under which $S_{b_n}^{a_k}$ is an algebra with respect to the twisted convolution and, as a consequence, its Fourier transformed space $S^{b_n}_{a_k}$ is an algebra with respect to the Moyal star product. We also consider a general family of translation-invariant star products. We define and characterize the corresponding algebras of multipliers and prove the basic inclusion relations between these algebras and the duals of the spaces of ordinary pointwise and convolution multipliers. Analogous relations are proved for the projective counterpart of the Gelfand–Shilov spaces. A key role in our analysis is played by a theorem characterizing those spaces of type $S$ for which the function $\exp (iQ(x))$ is a pointwise multiplier for any real quadratic form $Q$.
Received: October 5, 2018
Revised: October 13, 2018
Accepted: June 18, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 306, Pages 220–241
DOI: https://doi.org/10.1134/S0081543819050195
Bibliographic databases:
Document Type: Article
UDC: 530.145
Language: Russian
Citation: M. A. Soloviev, “Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product”, Mathematical physics and applications, Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 306, Steklov Math. Inst. RAS, Moscow, 2019, 235–257; Proc. Steklov Inst. Math., 306 (2019), 220–241
Citation in format AMSBIB
\Bibitem{Sol19}
\by M.~A.~Soloviev
\paper Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product
\inbook Mathematical physics and applications
\bookinfo Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 306
\pages 235--257
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4005}
\crossref{https://doi.org/10.4213/tm4005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4040778}
\elib{https://elibrary.ru/item.asp?id=43224238}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 306
\pages 220--241
\crossref{https://doi.org/10.1134/S0081543819050195}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511670100019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077360335}
Linking options:
  • https://www.mathnet.ru/eng/tm4005
  • https://doi.org/10.4213/tm4005
  • https://www.mathnet.ru/eng/tm/v306/p235
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :33
    References:27
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024