Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 305, Pages 197–210
DOI: https://doi.org/10.4213/tm4017
(Mi tm4017)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Rotation Number Integer Quantization Effect in Braid Groups

A. V. Malyutinab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, nab. Fontanki 27, St. Petersburg, 191023 Russia
b St. Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia
Full-text PDF (263 kB) Citations (1)
References:
Abstract: V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi initiated the study of the rotation number integer quantization effect for a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson junction. Focusing on this effect, we initiate the study of a similar rotation number quantization effect for a class of groups acting on the circle, including Artin's braid groups.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00609
The work was supported by the Russian Foundation for Basic Research, project no. 16-01-00609.
Received: September 15, 2018
Revised: February 24, 2019
Accepted: February 24, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 305, Pages 182–194
DOI: https://doi.org/10.1134/S0081543819030106
Bibliographic databases:
Document Type: Article
UDC: 512.54+515.162.8+517.925.7
Language: Russian
Citation: A. V. Malyutin, “The Rotation Number Integer Quantization Effect in Braid Groups”, Algebraic topology, combinatorics, and mathematical physics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 305, Steklov Math. Inst. RAS, Moscow, 2019, 197–210; Proc. Steklov Inst. Math., 305 (2019), 182–194
Citation in format AMSBIB
\Bibitem{Mal19}
\by A.~V.~Malyutin
\paper The Rotation Number Integer Quantization Effect in Braid Groups
\inbook Algebraic topology, combinatorics, and mathematical physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 305
\pages 197--210
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4017}
\crossref{https://doi.org/10.4213/tm4017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017607}
\elib{https://elibrary.ru/item.asp?id=41683753}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 305
\pages 182--194
\crossref{https://doi.org/10.1134/S0081543819030106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000491421700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073544468}
Linking options:
  • https://www.mathnet.ru/eng/tm4017
  • https://doi.org/10.4213/tm4017
  • https://www.mathnet.ru/eng/tm/v305/p197
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024