Abstract:
The work is devoted to the study of one-point commuting difference operators of rank 2. In the case of hyperelliptic spectral curves, we obtain equations equivalent to the Krichever–Novikov equations for the discrete dynamics of the Tyurin parameters. Using these equations, we construct examples of operators corresponding to hyperelliptic spectral curves of arbitrary genus.
Citation:
G. S. Mauleshova, A. E. Mironov, “Difference Krichever–Novikov Operators of Rank 2”, Algebraic topology, combinatorics, and mathematical physics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 305, Steklov Math. Inst. RAS, Moscow, 2019, 211–224; Proc. Steklov Inst. Math., 305 (2019), 195–208
\Bibitem{MauMir19}
\by G.~S.~Mauleshova, A.~E.~Mironov
\paper Difference Krichever--Novikov Operators of Rank~2
\inbook Algebraic topology, combinatorics, and mathematical physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 305
\pages 211--224
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3996}
\crossref{https://doi.org/10.4213/tm3996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017608}
\elib{https://elibrary.ru/item.asp?id=41649333}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 305
\pages 195--208
\crossref{https://doi.org/10.1134/S0081543819030118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000491421700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073460884}
Linking options:
https://www.mathnet.ru/eng/tm3996
https://doi.org/10.4213/tm3996
https://www.mathnet.ru/eng/tm/v305/p211
This publication is cited in the following 2 articles:
Alexander B. Zheglov, “The Schur–Sato Theory for Quasi-elliptic Rings”, Proc. Steklov Inst. Math., 320 (2023), 115–160
Gulnara S. Mauleshova, Andrey E. Mironov, “Discretization of Commuting Ordinary Differential Operators of Rank 2 in the Case of Elliptic Spectral Curves”, Proc. Steklov Inst. Math., 310 (2020), 202–213