Abstract:
We introduce the notion of a weight-almost greedy basis and show that a basis for a real Banach space is w-almost greedy if and only if it is both quasi-greedy and w-democratic. We also introduce the notion of a weight-semi-greedy basis and show that a w-almost greedy basis is w-semi-greedy and that the converse holds if the Banach space has finite cotype.
The first author was supported by the National Science Foundation under grant no. DMS-1361461. The third author was supported by a grant of the Government of the Russian Federation, project no. 14.W03.31.0031. The first and second authors were supported by the Workshop in Analysis and Probability at Texas A&M University in 2017.
Citation:
S. J. Dilworth, D. Kutzarova, V. N. Temlyakov, B. Wallis, “Weight-almost greedy bases”, Harmonic analysis, approximation theory, and number theory, Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 303, MAIK Nauka/Interperiodica, Moscow, 2018, 120–141; Proc. Steklov Inst. Math., 303 (2018), 109–128
\Bibitem{DilKutTem18}
\by S.~J.~Dilworth, D.~Kutzarova, V.~N.~Temlyakov, B.~Wallis
\paper Weight-almost greedy bases
\inbook Harmonic analysis, approximation theory, and number theory
\bookinfo Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 303
\pages 120--141
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3956}
\crossref{https://doi.org/10.1134/S0371968518040106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920218}
\elib{https://elibrary.ru/item.asp?id=37045256}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 303
\pages 109--128
\crossref{https://doi.org/10.1134/S0081543818080102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460475900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062605233}
Linking options:
https://www.mathnet.ru/eng/tm3956
https://doi.org/10.1134/S0371968518040106
https://www.mathnet.ru/eng/tm/v303/p120
This publication is cited in the following 4 articles:
H. V. Chu, “On weighted greedy-type bases”, Bull. Braz. Math. Soc., New Series, 54:4 (2023), 49
M. Berasategui, S. Lassalle, “Weak weight-semi-greedy Markushevich bases”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2023, 1–62
P. M. Berna, “Characterization of weight-semi-greedy bases”, J. Fourier Anal. Appl., 26:1 (2020)
P. M. Berna, S. J. Dilworth, D. Kutzarova, T. Oikhberg, B. Wallis, “The weighted property (a) and the greedy algorithm”, J. Approx. Theory, 248 (2019), UNSP 105300