Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 303, Pages 120–141
DOI: https://doi.org/10.1134/S0371968518040106
(Mi tm3956)
 

This article is cited in 4 scientific papers (total in 4 papers)

Weight-almost greedy bases

S. J. Dilwortha, D. Kutzarovabc, V. N. Temlyakovade, B. Wallisf

a Department of Mathematics, University of South Carolina, 1523 Greene St., Columbia, SC 29208, USA
b Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green St., Urbana, IL 61801, USA
c Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. Georgi Bonchev St., Sofia, 1113, Bulgaria
d Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
e Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
f Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115-2888, USA
Full-text PDF (279 kB) Citations (4)
References:
Abstract: We introduce the notion of a weight-almost greedy basis and show that a basis for a real Banach space is $w$-almost greedy if and only if it is both quasi-greedy and $w$-democratic. We also introduce the notion of a weight-semi-greedy basis and show that a $w$-almost greedy basis is $w$-semi-greedy and that the converse holds if the Banach space has finite cotype.
Funding agency Grant number
National Science Foundation DMS-1361461
Ministry of Education and Science of the Russian Federation 14.W03.31.0031
The first author was supported by the National Science Foundation under grant no. DMS-1361461. The third author was supported by a grant of the Government of the Russian Federation, project no. 14.W03.31.0031. The first and second authors were supported by the Workshop in Analysis and Probability at Texas A&M University in 2017.
Received: February 28, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 303, Pages 109–128
DOI: https://doi.org/10.1134/S0081543818080102
Bibliographic databases:
Document Type: Article
UDC: 517.982.22
Language: Russian
Citation: S. J. Dilworth, D. Kutzarova, V. N. Temlyakov, B. Wallis, “Weight-almost greedy bases”, Harmonic analysis, approximation theory, and number theory, Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 303, MAIK Nauka/Interperiodica, Moscow, 2018, 120–141; Proc. Steklov Inst. Math., 303 (2018), 109–128
Citation in format AMSBIB
\Bibitem{DilKutTem18}
\by S.~J.~Dilworth, D.~Kutzarova, V.~N.~Temlyakov, B.~Wallis
\paper Weight-almost greedy bases
\inbook Harmonic analysis, approximation theory, and number theory
\bookinfo Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 303
\pages 120--141
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3956}
\crossref{https://doi.org/10.1134/S0371968518040106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920218}
\elib{https://elibrary.ru/item.asp?id=37045256}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 303
\pages 109--128
\crossref{https://doi.org/10.1134/S0081543818080102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460475900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062605233}
Linking options:
  • https://www.mathnet.ru/eng/tm3956
  • https://doi.org/10.1134/S0371968518040106
  • https://www.mathnet.ru/eng/tm/v303/p120
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024