Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 303, Pages 142–154
DOI: https://doi.org/10.1134/S0371968518040118
(Mi tm3955)
 

This article is cited in 3 scientific papers (total in 3 papers)

Finite point configurations in the plane, rigidity and Erdős problems

A. Iosevich, J. Passant

Department of Mathematics, University of Rochester, Rochester, NY 14627, USA
Full-text PDF (231 kB) Citations (3)
References:
Abstract: For a finite point set $E\subset \mathbb {R}^d$ and a connected graph $G$ on $k+1$ vertices, we define a $G$‑framework to be a collection of $k+1$ points in $E$ such that the distance between a pair of points is specified if the corresponding vertices of $G$ are connected by an edge. We consider two frameworks the same if the specified edge-distances are the same. We find tight bounds on such distinct-distance drawings for rigid graphs in the plane, deploying the celebrated result of Guth and Katz. We introduce a congruence relation on a wider set of graphs, which behaves nicely in both the real-discrete and continuous settings. We provide a sharp bound on the number of such congruence classes. We then make a conjecture that the tight bound on rigid graphs should apply to all graphs. This appears to be a hard problem even in the case of the nonrigid $2$‑chain. However, we provide evidence to support the conjecture by demonstrating that if the Erdős pinned-distance conjecture holds in dimension $d$, then the result for all graphs in dimension $d$ follows.
Funding agency Grant number
NSA - National Security Agency H98230-15-1-0319
This work was partially supported by the NSA grant H98230-15-1-0319.
Received: June 1, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 303, Pages 129–139
DOI: https://doi.org/10.1134/S0081543818080114
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. Iosevich, J. Passant, “Finite point configurations in the plane, rigidity and Erdős problems”, Harmonic analysis, approximation theory, and number theory, Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 303, MAIK Nauka/Interperiodica, Moscow, 2018, 142–154; Proc. Steklov Inst. Math., 303 (2018), 129–139
Citation in format AMSBIB
\Bibitem{IosPas18}
\by A.~Iosevich, J.~Passant
\paper Finite point configurations in the plane, rigidity and Erd\H os problems
\inbook Harmonic analysis, approximation theory, and number theory
\bookinfo Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 303
\pages 142--154
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3955}
\crossref{https://doi.org/10.1134/S0371968518040118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920219}
\elib{https://elibrary.ru/item.asp?id=37045257}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 303
\pages 129--139
\crossref{https://doi.org/10.1134/S0081543818080114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460475900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062615828}
Linking options:
  • https://www.mathnet.ru/eng/tm3955
  • https://doi.org/10.1134/S0371968518040118
  • https://www.mathnet.ru/eng/tm/v303/p142
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :28
    References:22
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024