Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 301, Pages 225–240
DOI: https://doi.org/10.1134/S0371968518020176
(Mi tm3911)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the variational approach to systems of quasilinear conservation laws

Yu. G. Rykov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
Full-text PDF (252 kB) Citations (5)
References:
Abstract: The paper contains results concerning the development of a new approach to the proof of existence theorems for generalized solutions to systems of quasilinear conservation laws. This approach is based on reducing the search for a generalized solution to analyzing extremal properties of a certain set of functionals and is referred to as a variational approach. The definition of a generalized solution can be naturally reformulated in terms of the existence of critical points for a set of functionals, which is convenient within the approach proposed. The variational representation of generalized solutions, which was earlier known for Hopf-type equations, is generalized to systems of quasilinear conservation laws. The extremal properties of the functionals corresponding to systems of conservation laws are described within the variational approach, and a strategy for proving the existence theorem is outlined. In conclusion, it is shown that the variational approach can be generalized to the two-dimensional case.
Funding agency Grant number
Russian Science Foundation 14-21-00025
This work is supported by the Russian Science Foundation under grant 14-21-00025.
Received: September 20, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 301, Pages 213–227
DOI: https://doi.org/10.1134/S008154381804017X
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: Yu. G. Rykov, “On the variational approach to systems of quasilinear conservation laws”, Complex analysis, mathematical physics, and applications, Collected papers, Trudy Mat. Inst. Steklova, 301, MAIK Nauka/Interperiodica, Moscow, 2018, 225–240; Proc. Steklov Inst. Math., 301 (2018), 213–227
Citation in format AMSBIB
\Bibitem{Ryk18}
\by Yu.~G.~Rykov
\paper On the variational approach to systems of quasilinear conservation laws
\inbook Complex analysis, mathematical physics, and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 301
\pages 225--240
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3911}
\crossref{https://doi.org/10.1134/S0371968518020176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841671}
\elib{https://elibrary.ru/item.asp?id=35246353}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 301
\pages 213--227
\crossref{https://doi.org/10.1134/S008154381804017X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442104600017}
\elib{https://elibrary.ru/item.asp?id=35725190}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051683111}
Linking options:
  • https://www.mathnet.ru/eng/tm3911
  • https://doi.org/10.1134/S0371968518020176
  • https://www.mathnet.ru/eng/tm/v301/p225
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :32
    References:41
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024