Abstract:
A sharpened lower bound is obtained for the number of solutions to an inequality of the form $\alpha \le \{(a\overline {n}+bn)/q\}<\beta $, $1\le n\le N$, where $q$ is a sufficiently large prime number, $a$ and $b$ are integers with $(ab,q)=1$, $n\overline {n}\equiv 1 \pmod q$, and $0\le \alpha <\beta \le 1$. The length $N$ of the range of the variable $n$ is of order $q^\varepsilon $, where $\varepsilon >0$ is an arbitrarily small fixed number.
Citation:
M. A. Korolev, “On a Diophantine inequality with reciprocals”, Analytic number theory, On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba, Trudy Mat. Inst. Steklova, 299, MAIK Nauka/Interperiodica, Moscow, 2017, 144–154; Proc. Steklov Inst. Math., 299 (2017), 132–142
\Bibitem{Kor17}
\by M.~A.~Korolev
\paper On a Diophantine inequality with reciprocals
\inbook Analytic number theory
\bookinfo On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 299
\pages 144--154
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3847}
\crossref{https://doi.org/10.1134/S0371968517040094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3761450}
\elib{https://elibrary.ru/item.asp?id=30727070}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 299
\pages 132--142
\crossref{https://doi.org/10.1134/S0081543817080090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425317900009}
\elib{https://elibrary.ru/item.asp?id=29493660}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042141336}
Linking options:
https://www.mathnet.ru/eng/tm3847
https://doi.org/10.1134/S0371968517040094
https://www.mathnet.ru/eng/tm/v299/p144
This publication is cited in the following 5 articles:
M. A. Korolev, “Short Kloosterman Sums with Primes”, Math. Notes, 106:1 (2019), 89–97
M. A. Korolev, “Kloosterman sums with multiplicative coefficients”, Izv. Math., 82:4 (2018), 647–661
M. A. Korolev, “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Math. Notes, 103:5 (2018), 761–768
M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659
M. A. Korolev, “On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s”, Proc. Steklov Inst. Math., 299 (2017), 1–43