Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 297, Pages 201–210
DOI: https://doi.org/10.1134/S0371968517020108
(Mi tm3800)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the structure of the ambient manifold for Morse–Smale systems without heteroclinic intersections

V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev

National Research University "Higher School of Economics", ul. Myasnitskaya 20, Moscow, 101000 Russia
Full-text PDF (221 kB) Citations (7)
References:
Abstract: It is shown that if a closed smooth orientable manifold $M^n$, $n\geq3$, admits a Morse–Smale system without heteroclinic intersections (the absence of periodic trajectories is additionally required in the case of a Morse–Smale flow), then this manifold is homeomorphic to the connected sum of manifolds whose structure is interconnected with the type and number of points that belong to the non-wandering set of the Morse–Smale system.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03689-а
16-51-10005-Ko_a
Russian Science Foundation 14-41-00044
HSE Basic Research Program 90
This work is supported by the Russian Foundation for Basic Research (project nos. 15-01-03689‑a and 16-51-10005-Ko_a) and by the Russian Science Foundation (project no. 14-41-00044). The research is carried out within the HSE Basic Research Program (project no. 90) in 2017.
Received: April 3, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 297, Pages 179–187
DOI: https://doi.org/10.1134/S0081543817040101
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On the structure of the ambient manifold for Morse–Smale systems without heteroclinic intersections”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 201–210; Proc. Steklov Inst. Math., 297 (2017), 179–187
Citation in format AMSBIB
\Bibitem{GriZhuMed17}
\by V.~Z.~Grines, E.~V.~Zhuzhoma, V.~S.~Medvedev
\paper On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 201--210
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3800}
\crossref{https://doi.org/10.1134/S0371968517020108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3695413}
\elib{https://elibrary.ru/item.asp?id=29859496}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 179--187
\crossref{https://doi.org/10.1134/S0081543817040101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029156763}
Linking options:
  • https://www.mathnet.ru/eng/tm3800
  • https://doi.org/10.1134/S0371968517020108
  • https://www.mathnet.ru/eng/tm/v297/p201
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :44
    References:43
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024