Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 297, Pages 165–200
DOI: https://doi.org/10.1134/S0371968517020091
(Mi tm3797)
 

This article is cited in 22 scientific papers (total in 22 papers)

Joint spectrum and the infinite dihedral group

Rostislav Grigorchukab, Rongwei Yangc

a Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
c Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, NY 12222, USA
References:
Abstract: For a tuple $A=(A_1,A_2,\dots,A_n)$ of elements in a unital Banach algebra $\mathcal B$, its projective joint spectrum $P(A)$ is the collection of $z\in\mathbb C^n$ such that the multiparameter pencil $A(z)=z_1A_1+z_2A_2+\dots+z_nA_n$ is not invertible. If $\mathcal B$ is the group $C^*$-algebra for a discrete group $G$ generated by $A_1,A_2,\dots,A_n$ with respect to a representation $\rho$, then $P(A)$ is an invariant of (weak) equivalence for $\rho $. This paper computes the joint spectrum of $R=(1,a,t)$ for the infinite dihedral group $D_\infty=\langle a,t\mid a^2=t^2=1\rangle$ with respect to the left regular representation $\lambda_{D_\infty}$, and gives an in-depth analysis on its properties. A formula for the Fuglede–Kadison determinant of the pencil $R(z)=z_0+z_1a+z_2t$ is obtained, and it is used to compute the first singular homology group of the joint resolvent set $P^\mathrm c(R)$. The joint spectrum gives new insight into some earlier studies on groups of intermediate growth, through which the corresponding joint spectrum of $(1,a,t)$ with respect to the Koopman representation $\rho$ (constructed through a self-similar action of $D_\infty$ on a binary tree) can be computed. It turns out that the joint spectra with respect to the two representations coincide. Interestingly, this fact leads to a self-similar realization of the group $C^*$-algebra $C^*(D_\infty)$. This self-similarity of $C^*(D_\infty)$ manifests itself in some dynamical properties of the joint spectrum.
Funding agency Grant number
NSA - National Security Agency H98230-15-1
Swiss National Science Foundation
European Research Council AG COMPASP
The first author is supported by the NSA grant H98230-15-1, the Swiss National Science Foundation, and ERC AG COMPASP.
Received: September 1, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 297, Pages 145–178
DOI: https://doi.org/10.1134/S0081543817040095
Bibliographic databases:
Document Type: Article
UDC: 517.986+517.984+512.547
Language: Russian
Citation: Rostislav Grigorchuk, Rongwei Yang, “Joint spectrum and the infinite dihedral group”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 165–200; Proc. Steklov Inst. Math., 297 (2017), 145–178
Citation in format AMSBIB
\Bibitem{GriYan17}
\by Rostislav~Grigorchuk, Rongwei~Yang
\paper Joint spectrum and the infinite dihedral group
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 165--200
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3797}
\crossref{https://doi.org/10.1134/S0371968517020091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3695412}
\elib{https://elibrary.ru/item.asp?id=29859495}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 145--178
\crossref{https://doi.org/10.1134/S0081543817040095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029169089}
Linking options:
  • https://www.mathnet.ru/eng/tm3797
  • https://doi.org/10.1134/S0371968517020091
  • https://www.mathnet.ru/eng/tm/v297/p165
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :73
    References:37
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024